天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

微波脈沖對低噪聲放大器的效應(yīng)研究

發(fā)布時(shí)間:2019-07-05 18:52
【摘要】:高功率微波的輸出功率達(dá)到GW甚至十GW水平,已經(jīng)成為電子系統(tǒng)的重要威脅。低噪聲放大器作為射頻前端的核心器件以及最脆弱的器件,極易被鄰近微波發(fā)射源的微波脈沖干擾甚至損傷。為了獲得微波脈沖參數(shù)對電子系統(tǒng)作用效果的影響規(guī)律,以及尋找增強(qiáng)半導(dǎo)體器件微波防護(hù)能力的方法,論文利用理論分析、仿真分析、注入實(shí)驗(yàn)以及失效分析方法開展了微波脈沖對雙極型晶體管(BJT)型和贗配高電子遷移率晶體管(PHEMT)型低噪聲放大器的效應(yīng)研究。研究了微波脈沖作用下器件的非線性特性和損傷特性,同時(shí)分析了脈沖參數(shù)以及器件工作狀態(tài)對器件損傷功率的影響規(guī)律。論文的主要內(nèi)容及結(jié)論如下:1、利用理論分析和仿真分析研究了微波脈沖作用低噪聲放大器的效應(yīng)機(jī)理。通過建立頻率對半導(dǎo)體器件熱效應(yīng)影響的理論模型,分析得到低頻時(shí)器件更容易損傷。通過建立微波脈沖作用BJT和PHEMT的仿真模型,研究了微波脈沖作用下半導(dǎo)體器件的非線性效應(yīng)機(jī)理和損傷效應(yīng)機(jī)理。微波脈沖從基極注入時(shí)BJT集電極輸出電流隨基極注入電壓的增加呈現(xiàn)出線性增加、飽和、減小、最后反向且再增加的特性;BJT發(fā)射結(jié)附近的基區(qū)以及基極電極和發(fā)射極電極為器件的易損部位。微波脈沖從柵極注入時(shí)PHEMT漏極輸出電流隨柵極注入電壓的增加呈現(xiàn)出線性增加、飽和、最后反向且再增加的特性;PHEMT柵極下方靠源極側(cè)以及柵極電極和源極電極為器件的易損部位。同時(shí)獲得了微波脈沖頻率、脈寬以及器件偏壓對半導(dǎo)體器件損傷效應(yīng)的影響規(guī)律。2、開展了微波脈沖對BJT型和PHEMT型低噪聲放大器的注入實(shí)驗(yàn),研究了微波脈沖作用低噪聲放大器的非線性效應(yīng)特性和損傷效應(yīng)規(guī)律。實(shí)驗(yàn)測量得到的低噪聲放大器輸出波形隨注入功率增加的變化特性與仿真結(jié)果相符。獲得了不同脈沖參數(shù)(包括脈寬、頻率和脈沖個(gè)數(shù))以及器件不同工作狀態(tài)對低噪聲放大器損傷功率的影響規(guī)律,同時(shí)分析了低噪聲放大器損傷時(shí)的典型波形。低噪聲放大器的損傷功率隨脈寬增加的變化分為兩段:第一段,脈寬20 ns~100 ns,損傷功率與脈寬關(guān)系為P∝t-1;第二段,脈寬100 ns~2000 ns,P∝t-1/2。頻率為1.5 GHz~10 GHz范圍內(nèi),器件損傷功率隨頻率增加呈現(xiàn)出先增加后減小的趨勢,器件最大損傷功率的頻率點(diǎn)在6 GHz附近,與微波脈沖作用BJT的三維仿真結(jié)果相符。BJT型低噪聲放大器的損傷功率隨脈沖個(gè)數(shù)增加基本不變;在脈沖個(gè)數(shù)小于100個(gè)時(shí),脈沖個(gè)數(shù)越多損傷PHEMT型低噪聲放大器所需的功率越小。低噪聲放大器不同偏壓條件下的損傷功率一樣,器件損傷的能量來自微波脈沖。大信號(hào)作用下,低噪聲放大器輸出信號(hào)的倍頻分量顯著增大,器件損傷時(shí)晶體管輸入阻抗發(fā)生突變,導(dǎo)致阻抗失配,使得反射信號(hào)突然增大,而輸出信號(hào)突然減小。3、對比分析了半導(dǎo)體器件損傷前后的電特性。BJT損傷后各電極間電阻值正偏和反偏時(shí)一樣,且明顯減小,基極-發(fā)射極電阻減小的幅度最大;晶體管PN結(jié)的擊穿電壓都趨于零,且不再具有PN結(jié)特性。BJT損傷后發(fā)射結(jié)和集電結(jié)擊穿,形成了具有較小電阻值的短路路徑,導(dǎo)致晶體管出現(xiàn)永久性的功能喪失。PHEMT損傷后柵極-源極和柵極-漏極的電阻值正偏和反偏時(shí)一樣,且明顯減小;同時(shí),晶體管飽和漏電流和柵極泄露電流顯著增大,輸出特性曲線表現(xiàn)為電阻特性,柵極失去了對漏極電流的控制能力。PHEMT損傷后肖特基結(jié)擊穿,形成了具有較小電阻值的短路路徑。4、分析了不同損傷條件下半導(dǎo)體器件的微觀損傷形貌。微波脈沖從基極注入BJT時(shí),基極電極的輸入端和其下方基區(qū)的Si材料為器件的易損部位,與仿真得到的晶體管易損部位相符。不同注入條件下,BJT的損傷程度存在明顯差異。多個(gè)脈沖注入時(shí)BJT基極電極被燒斷,而單個(gè)脈沖注入時(shí)基極電極只是被燒熔,多個(gè)脈沖注入時(shí)的損傷程度更嚴(yán)重。單個(gè)脈沖注入時(shí),脈寬越長,BJT的損傷現(xiàn)象越容易被觀測到,且損傷區(qū)域的面積越大。微波脈沖從PHEMT的柵極注入時(shí),PHEMT的柵極條以及柵極條的周圍區(qū)域?yàn)榫w管的易損部位,與仿真得到的晶體管易損部位相符。不同注入條件下,PHEMT的損傷圖像沒有明顯差異。5、統(tǒng)計(jì)分析了兩種型號(hào)被微波脈沖損傷的GaAs PHEMT單片微波集成電路(MMIC)芯片的損傷模式。結(jié)果表明,不同型號(hào)的MMIC芯片損傷位置存在明顯差異。MMIC芯片的有源結(jié)構(gòu)和無源器件都有可能出現(xiàn)損傷。有源結(jié)構(gòu)出現(xiàn)損傷的概率更大,無源器件中平面螺旋電感為易損部位。
[Abstract]:The output power of high-power microwave reaches the level of GW or even 10 GW, which has become an important threat to the electronic system. The low-noise amplifier, as the core device of the RF front-end and the most vulnerable device, is highly susceptible to microwave pulse interference and even damage to the microwave-emitting source. in order to obtain the influence of the microwave pulse parameters on the effect of the electronic system, and to find a method for enhancing the microwave protection capability of the semiconductor device, the paper makes use of the theoretical analysis, the simulation analysis, The effect of microwave pulse on bipolar transistor (BJT) type and high electron mobility transistor (PHEMT) type low noise amplifier was studied by injection experiment and failure analysis method. The nonlinear characteristic and the damage characteristic of the device under the action of microwave pulse are studied, and the influence of the pulse parameters and the working state of the device on the damage power of the device is also analyzed. The main contents and conclusions of the paper are as follows:1. The effect mechanism of the microwave pulse action low noise amplifier is studied by means of theoretical analysis and simulation analysis. By establishing a theoretical model of the effect of frequency on the thermal effect of the semiconductor device, the device is more likely to be damaged when the low frequency is obtained. The nonlinear effect mechanism and the damage effect mechanism of the semiconductor device under the action of microwave pulse are studied by establishing a simulation model of the BJT and PHEMT under the action of microwave. When the microwave pulse is injected from the base, the increase of the output current of the BJT collector with the base injection voltage exhibits a linear increase, a saturation, a reduction, a last reverse and an additional characteristic, and the base region and the base electrode and the emitter electrode in the vicinity of the BJT emitter junction are the vulnerable parts of the device. The increase of the drain output current of the phemt when the microwave pulse is injected from the gate shows a linear increase, a saturation, a last reverse and a re-increased characteristic with the increase of the gate injection voltage; the source side and the gate electrode and the source electrode below the phemt gate are the vulnerable parts of the device. The effect of microwave pulse frequency, pulse width and device bias on the damage of semiconductor device was also obtained. The nonlinear effect and the damage effect of the low noise amplifier with microwave pulse are studied. The output waveform of the low-noise amplifier obtained by the experiment is matched with the simulation result with the increase of the injection power. The influence of different pulse parameters (including pulse width, frequency and number of pulses) and different working conditions of the device on the damage power of the low-noise amplifier is obtained, and the typical waveform of the low-noise amplifier is analyzed. The damage power of the low-noise amplifier is divided into two sections with the increase of the pulse width: the first section, the pulse width of 20 ns-100 ns, the damage power and the pulse width are P-type-1, the second section, the pulse width is 100 ns-2000 ns, and the P-type-1/2. The frequency of the device is in the range of 1.5 GHz to 10 GHz, the damage power of the device increases with the increase of the frequency, and the frequency point of the maximum damage power of the device is in the vicinity of 6 GHz, and is in accordance with the three-dimensional simulation result of the microwave pulse effect BJT. The damage power of the BJT-type low-noise amplifier increases with the number of pulses, and the smaller the number of pulses, the more the number of pulses, the smaller the power required to damage the PHEMT-type low-noise amplifier. As with the damage power of the low noise amplifier under different bias conditions, the energy of the device damage comes from the microwave pulse. Under the action of a large signal, the frequency-doubling component of the output signal of the low-noise amplifier is obviously increased, the input impedance of the transistor is abruptly changed when the device is damaged, the impedance mismatch is caused, the reflection signal is suddenly increased, and the output signal is suddenly reduced. The electrical characteristics before and after the damage of the semiconductor device were compared. After BJT is damaged, the resistance value of each electrode is the same as in the case of anti-bias, and is obviously reduced, and the base-emitter resistance is reduced to the maximum; the breakdown voltage of the transistor PN junction tends to be zero, and the PN junction characteristic is no longer present. The breakdown of the emitter junction and the collector junction after the BJT damage forms a short-circuit path with a small resistance value, leading to a permanent loss of function of the transistor. When PHEMT is damaged, the resistance of gate-source and gate-drain is the same as in the case of anti-bias, and is obviously reduced; at the same time, the leakage current of the transistor and the leakage current of the gate are significantly increased, and the output characteristic curve is shown as the resistance characteristic, and the gate has lost control of the drain current. The Schottky junction breakdown after the PHEMT injury resulted in a short circuit with a small resistance value.4. The micro-damage morphology of the semiconductor device under different damage conditions was analyzed. When the microwave pulse is injected from the base into the BJT, the input end of the base electrode and the Si material of the base region below the base electrode are the vulnerable parts of the device, and are matched with the vulnerable parts of the transistor obtained by the simulation. There is a significant difference in the degree of damage of BJT under different injection conditions. The BJT base electrode is blown when a plurality of pulses are injected, and the base electrode is only fused at the time of a single pulse injection, and the degree of damage at the time of multiple pulse injection is more severe. As a single pulse is injected, the longer the pulse width, the more easily the BJT's damage is observed, and the larger the area of the damage area. When the microwave pulse is injected from the gate of the PHEMT, the gate strip of the PHEMT and the peripheral area of the grid strip are the vulnerable parts of the transistor, and are matched with the vulnerable parts of the transistor obtained by the simulation. The damage images of the PHEMT were not significantly different under different injection conditions.5, the damage mode of the GaAs PHEMT single-chip microwave integrated circuit (MMIC) chip which was damaged by the microwave pulse was analyzed. The results show that there is a significant difference in the location of MMIC chip in different models. The active structure and the passive device of the mmic chip are likely to be damaged. The probability of damage to the active structure is larger, and the plane spiral inductor in the passive device is a vulnerable part.
【學(xué)位授予單位】:國防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN722.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 彭龍新,蔣幼泉,林金庭,魏同立;全單片高增益低噪聲放大器[J];固體電子學(xué)研究與進(jìn)展;2001年04期

2 ;高頻低噪聲放大器[J];國外電子元器件;2001年01期

3 安毅,呂昕,高本慶;振幅比較單脈沖系統(tǒng)中前端低噪聲放大器的選擇[J];雷達(dá)與對抗;2001年01期

4 曹克,楊華中,汪蕙;低電壓低功耗CMOS射頻低噪聲放大器的研究進(jìn)展[J];微電子學(xué);2003年04期

5 一凡;全波段毫米波低噪聲放大器[J];微電子技術(shù);2003年03期

6 張廣,鄭武團(tuán),田海林;低噪聲放大器的網(wǎng)絡(luò)設(shè)計(jì)法[J];現(xiàn)代電子技術(shù);2004年01期

7 ;安捷倫科技推出具關(guān)斷功能的超低噪聲放大器模塊[J];電子與電腦;2005年11期

8 張紅南;黃雅攸;蔣超;顏永紅;;高增益低功耗CMOS低噪聲放大器的設(shè)計(jì)[J];微計(jì)算機(jī)信息;2008年29期

9 劉峻;盧劍;李新;郭宇;蘇建華;梁潔;;一種低噪聲放大器的白噪聲分析[J];中國集成電路;2009年08期

10 周偉中;;低噪聲放大器的仿真設(shè)計(jì)[J];科技資訊;2010年14期

相關(guān)會(huì)議論文 前10條

1 張乾本;;45°K超低噪聲放大器[A];1993年全國微波會(huì)議論文集(下冊)[C];1993年

2 高飛;張曉平;郜龍馬;朱美紅;曹必松;高葆新;;低溫低噪聲放大器特性研究[A];2003'全國微波毫米波會(huì)議論文集[C];2003年

3 鄭磊;胡皓全;田立卿;;低噪聲放大器的設(shè)計(jì)[A];2005'全國微波毫米波會(huì)議論文集(第三冊)[C];2006年

4 郭偉;鮑景富;;低噪聲放大器穩(wěn)定性分析與設(shè)計(jì)方法[A];2005'全國微波毫米波會(huì)議論文集(第二冊)[C];2006年

5 賀菁;董宇亮;徐軍;李桂萍;;5mm寬帶低噪聲放大器的研制[A];2007年全國微波毫米波會(huì)議論文集(上冊)[C];2007年

6 劉暢;梁曉新;閻躍鵬;;射頻寬帶低噪聲放大器設(shè)計(jì)[A];2009安捷倫科技節(jié)論文集[C];2009年

7 王云峰;李磊;梁遠(yuǎn)軍;朱文龍;;雙平衡支路低噪聲放大器的設(shè)計(jì)與測試[A];2009安捷倫科技節(jié)論文集[C];2009年

8 劉寶宏;陳東坡;毛軍發(fā);;一種采用正體偏置和增益增強(qiáng)技術(shù)的低電壓低功耗低噪聲放大器[A];2009年全國微波毫米波會(huì)議論文集(下冊)[C];2009年

9 張利飛;汪海勇;;低噪聲放大器的仿真設(shè)計(jì)[A];2009年全國微波毫米波會(huì)議論文集(下冊)[C];2009年

10 王漢華;胡先進(jìn);;衛(wèi)星電視低噪聲放大器的設(shè)計(jì)[A];1997年全國微波會(huì)議論文集(上冊)[C];1997年

相關(guān)重要報(bào)紙文章 前1條

1 四川 張達(dá) 編譯;增益從1到1000倍可變的高精度低噪聲放大器[N];電子報(bào);2004年

相關(guān)博士學(xué)位論文 前10條

1 井凱;SiGe HBT低噪聲放大器的研究[D];西安電子科技大學(xué);2016年

2 張存波;微波脈沖對低噪聲放大器的效應(yīng)研究[D];國防科學(xué)技術(shù)大學(xué);2015年

3 曹克;低電壓低功耗CMOS射頻低噪聲放大器設(shè)計(jì)[D];清華大學(xué);2005年

4 劉寶宏;CMOS工藝的低電壓低噪聲放大器研究[D];上海交通大學(xué);2011年

5 黃煜梅;CMOS藍(lán)牙收發(fā)器中低噪聲放大器的設(shè)計(jì)及高頻噪聲研究[D];復(fù)旦大學(xué);2004年

6 許永生;CMOS射頻器件建模及低噪聲放大器的設(shè)計(jì)研究[D];華東師范大學(xué);2006年

7 李琨;低噪聲放大器動(dòng)態(tài)范圍擴(kuò)展的理論和方法研究[D];天津大學(xué);2010年

8 王軍;低噪聲放大器模塊化分析與設(shè)計(jì)的等效噪聲模型法的研究[D];電子科技大學(xué);1999年

9 黃東;面向多帶多標(biāo)準(zhǔn)接收機(jī)的寬帶CMOS低噪聲放大器研究[D];中國科學(xué)技術(shù)大學(xué);2015年

10 彭洋洋;微波/毫米波單片集成收發(fā)機(jī)中關(guān)鍵電路的設(shè)計(jì)及其小型化[D];浙江大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 張全;宇航用低噪聲放大器研制及其可靠性研究[D];西安電子科技大學(xué);2012年

2 馮永革;低噪聲放大器的研究與設(shè)計(jì)[D];南京理工大學(xué);2015年

3 易凱;CMOS毫米波低噪聲放大器設(shè)計(jì)[D];電子科技大學(xué);2014年

4 賴宏南;超寬帶大動(dòng)態(tài)自動(dòng)電平控制系統(tǒng)研究[D];電子科技大學(xué);2014年

5 李佩;微波單片專用集成電路設(shè)計(jì)[D];電子科技大學(xué);2009年

6 王軻;微波寬帶低噪聲放大器研究[D];電子科技大學(xué);2015年

7 李凱;平衡式低噪聲放大器設(shè)計(jì)[D];電子科技大學(xué);2015年

8 趙艷陽;X波段限幅低噪聲放大器設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年

9 李辛琦;1.2GHz CMOS低噪聲放大器的仿真設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2015年

10 孫海昕;基于CMOS工藝的射頻低噪聲放大器的設(shè)計(jì)[D];黑龍江大學(xué);2015年



本文編號(hào):2510738

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2510738.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e7323***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com