微波脈沖對低噪聲放大器的效應(yīng)研究
[Abstract]:The output power of high-power microwave reaches the level of GW or even 10 GW, which has become an important threat to the electronic system. The low-noise amplifier, as the core device of the RF front-end and the most vulnerable device, is highly susceptible to microwave pulse interference and even damage to the microwave-emitting source. in order to obtain the influence of the microwave pulse parameters on the effect of the electronic system, and to find a method for enhancing the microwave protection capability of the semiconductor device, the paper makes use of the theoretical analysis, the simulation analysis, The effect of microwave pulse on bipolar transistor (BJT) type and high electron mobility transistor (PHEMT) type low noise amplifier was studied by injection experiment and failure analysis method. The nonlinear characteristic and the damage characteristic of the device under the action of microwave pulse are studied, and the influence of the pulse parameters and the working state of the device on the damage power of the device is also analyzed. The main contents and conclusions of the paper are as follows:1. The effect mechanism of the microwave pulse action low noise amplifier is studied by means of theoretical analysis and simulation analysis. By establishing a theoretical model of the effect of frequency on the thermal effect of the semiconductor device, the device is more likely to be damaged when the low frequency is obtained. The nonlinear effect mechanism and the damage effect mechanism of the semiconductor device under the action of microwave pulse are studied by establishing a simulation model of the BJT and PHEMT under the action of microwave. When the microwave pulse is injected from the base, the increase of the output current of the BJT collector with the base injection voltage exhibits a linear increase, a saturation, a reduction, a last reverse and an additional characteristic, and the base region and the base electrode and the emitter electrode in the vicinity of the BJT emitter junction are the vulnerable parts of the device. The increase of the drain output current of the phemt when the microwave pulse is injected from the gate shows a linear increase, a saturation, a last reverse and a re-increased characteristic with the increase of the gate injection voltage; the source side and the gate electrode and the source electrode below the phemt gate are the vulnerable parts of the device. The effect of microwave pulse frequency, pulse width and device bias on the damage of semiconductor device was also obtained. The nonlinear effect and the damage effect of the low noise amplifier with microwave pulse are studied. The output waveform of the low-noise amplifier obtained by the experiment is matched with the simulation result with the increase of the injection power. The influence of different pulse parameters (including pulse width, frequency and number of pulses) and different working conditions of the device on the damage power of the low-noise amplifier is obtained, and the typical waveform of the low-noise amplifier is analyzed. The damage power of the low-noise amplifier is divided into two sections with the increase of the pulse width: the first section, the pulse width of 20 ns-100 ns, the damage power and the pulse width are P-type-1, the second section, the pulse width is 100 ns-2000 ns, and the P-type-1/2. The frequency of the device is in the range of 1.5 GHz to 10 GHz, the damage power of the device increases with the increase of the frequency, and the frequency point of the maximum damage power of the device is in the vicinity of 6 GHz, and is in accordance with the three-dimensional simulation result of the microwave pulse effect BJT. The damage power of the BJT-type low-noise amplifier increases with the number of pulses, and the smaller the number of pulses, the more the number of pulses, the smaller the power required to damage the PHEMT-type low-noise amplifier. As with the damage power of the low noise amplifier under different bias conditions, the energy of the device damage comes from the microwave pulse. Under the action of a large signal, the frequency-doubling component of the output signal of the low-noise amplifier is obviously increased, the input impedance of the transistor is abruptly changed when the device is damaged, the impedance mismatch is caused, the reflection signal is suddenly increased, and the output signal is suddenly reduced. The electrical characteristics before and after the damage of the semiconductor device were compared. After BJT is damaged, the resistance value of each electrode is the same as in the case of anti-bias, and is obviously reduced, and the base-emitter resistance is reduced to the maximum; the breakdown voltage of the transistor PN junction tends to be zero, and the PN junction characteristic is no longer present. The breakdown of the emitter junction and the collector junction after the BJT damage forms a short-circuit path with a small resistance value, leading to a permanent loss of function of the transistor. When PHEMT is damaged, the resistance of gate-source and gate-drain is the same as in the case of anti-bias, and is obviously reduced; at the same time, the leakage current of the transistor and the leakage current of the gate are significantly increased, and the output characteristic curve is shown as the resistance characteristic, and the gate has lost control of the drain current. The Schottky junction breakdown after the PHEMT injury resulted in a short circuit with a small resistance value.4. The micro-damage morphology of the semiconductor device under different damage conditions was analyzed. When the microwave pulse is injected from the base into the BJT, the input end of the base electrode and the Si material of the base region below the base electrode are the vulnerable parts of the device, and are matched with the vulnerable parts of the transistor obtained by the simulation. There is a significant difference in the degree of damage of BJT under different injection conditions. The BJT base electrode is blown when a plurality of pulses are injected, and the base electrode is only fused at the time of a single pulse injection, and the degree of damage at the time of multiple pulse injection is more severe. As a single pulse is injected, the longer the pulse width, the more easily the BJT's damage is observed, and the larger the area of the damage area. When the microwave pulse is injected from the gate of the PHEMT, the gate strip of the PHEMT and the peripheral area of the grid strip are the vulnerable parts of the transistor, and are matched with the vulnerable parts of the transistor obtained by the simulation. The damage images of the PHEMT were not significantly different under different injection conditions.5, the damage mode of the GaAs PHEMT single-chip microwave integrated circuit (MMIC) chip which was damaged by the microwave pulse was analyzed. The results show that there is a significant difference in the location of MMIC chip in different models. The active structure and the passive device of the mmic chip are likely to be damaged. The probability of damage to the active structure is larger, and the plane spiral inductor in the passive device is a vulnerable part.
【學(xué)位授予單位】:國防科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN722.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 彭龍新,蔣幼泉,林金庭,魏同立;全單片高增益低噪聲放大器[J];固體電子學(xué)研究與進(jìn)展;2001年04期
2 ;高頻低噪聲放大器[J];國外電子元器件;2001年01期
3 安毅,呂昕,高本慶;振幅比較單脈沖系統(tǒng)中前端低噪聲放大器的選擇[J];雷達(dá)與對抗;2001年01期
4 曹克,楊華中,汪蕙;低電壓低功耗CMOS射頻低噪聲放大器的研究進(jìn)展[J];微電子學(xué);2003年04期
5 一凡;全波段毫米波低噪聲放大器[J];微電子技術(shù);2003年03期
6 張廣,鄭武團(tuán),田海林;低噪聲放大器的網(wǎng)絡(luò)設(shè)計(jì)法[J];現(xiàn)代電子技術(shù);2004年01期
7 ;安捷倫科技推出具關(guān)斷功能的超低噪聲放大器模塊[J];電子與電腦;2005年11期
8 張紅南;黃雅攸;蔣超;顏永紅;;高增益低功耗CMOS低噪聲放大器的設(shè)計(jì)[J];微計(jì)算機(jī)信息;2008年29期
9 劉峻;盧劍;李新;郭宇;蘇建華;梁潔;;一種低噪聲放大器的白噪聲分析[J];中國集成電路;2009年08期
10 周偉中;;低噪聲放大器的仿真設(shè)計(jì)[J];科技資訊;2010年14期
相關(guān)會(huì)議論文 前10條
1 張乾本;;45°K超低噪聲放大器[A];1993年全國微波會(huì)議論文集(下冊)[C];1993年
2 高飛;張曉平;郜龍馬;朱美紅;曹必松;高葆新;;低溫低噪聲放大器特性研究[A];2003'全國微波毫米波會(huì)議論文集[C];2003年
3 鄭磊;胡皓全;田立卿;;低噪聲放大器的設(shè)計(jì)[A];2005'全國微波毫米波會(huì)議論文集(第三冊)[C];2006年
4 郭偉;鮑景富;;低噪聲放大器穩(wěn)定性分析與設(shè)計(jì)方法[A];2005'全國微波毫米波會(huì)議論文集(第二冊)[C];2006年
5 賀菁;董宇亮;徐軍;李桂萍;;5mm寬帶低噪聲放大器的研制[A];2007年全國微波毫米波會(huì)議論文集(上冊)[C];2007年
6 劉暢;梁曉新;閻躍鵬;;射頻寬帶低噪聲放大器設(shè)計(jì)[A];2009安捷倫科技節(jié)論文集[C];2009年
7 王云峰;李磊;梁遠(yuǎn)軍;朱文龍;;雙平衡支路低噪聲放大器的設(shè)計(jì)與測試[A];2009安捷倫科技節(jié)論文集[C];2009年
8 劉寶宏;陳東坡;毛軍發(fā);;一種采用正體偏置和增益增強(qiáng)技術(shù)的低電壓低功耗低噪聲放大器[A];2009年全國微波毫米波會(huì)議論文集(下冊)[C];2009年
9 張利飛;汪海勇;;低噪聲放大器的仿真設(shè)計(jì)[A];2009年全國微波毫米波會(huì)議論文集(下冊)[C];2009年
10 王漢華;胡先進(jìn);;衛(wèi)星電視低噪聲放大器的設(shè)計(jì)[A];1997年全國微波會(huì)議論文集(上冊)[C];1997年
相關(guān)重要報(bào)紙文章 前1條
1 四川 張達(dá) 編譯;增益從1到1000倍可變的高精度低噪聲放大器[N];電子報(bào);2004年
相關(guān)博士學(xué)位論文 前10條
1 井凱;SiGe HBT低噪聲放大器的研究[D];西安電子科技大學(xué);2016年
2 張存波;微波脈沖對低噪聲放大器的效應(yīng)研究[D];國防科學(xué)技術(shù)大學(xué);2015年
3 曹克;低電壓低功耗CMOS射頻低噪聲放大器設(shè)計(jì)[D];清華大學(xué);2005年
4 劉寶宏;CMOS工藝的低電壓低噪聲放大器研究[D];上海交通大學(xué);2011年
5 黃煜梅;CMOS藍(lán)牙收發(fā)器中低噪聲放大器的設(shè)計(jì)及高頻噪聲研究[D];復(fù)旦大學(xué);2004年
6 許永生;CMOS射頻器件建模及低噪聲放大器的設(shè)計(jì)研究[D];華東師范大學(xué);2006年
7 李琨;低噪聲放大器動(dòng)態(tài)范圍擴(kuò)展的理論和方法研究[D];天津大學(xué);2010年
8 王軍;低噪聲放大器模塊化分析與設(shè)計(jì)的等效噪聲模型法的研究[D];電子科技大學(xué);1999年
9 黃東;面向多帶多標(biāo)準(zhǔn)接收機(jī)的寬帶CMOS低噪聲放大器研究[D];中國科學(xué)技術(shù)大學(xué);2015年
10 彭洋洋;微波/毫米波單片集成收發(fā)機(jī)中關(guān)鍵電路的設(shè)計(jì)及其小型化[D];浙江大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 張全;宇航用低噪聲放大器研制及其可靠性研究[D];西安電子科技大學(xué);2012年
2 馮永革;低噪聲放大器的研究與設(shè)計(jì)[D];南京理工大學(xué);2015年
3 易凱;CMOS毫米波低噪聲放大器設(shè)計(jì)[D];電子科技大學(xué);2014年
4 賴宏南;超寬帶大動(dòng)態(tài)自動(dòng)電平控制系統(tǒng)研究[D];電子科技大學(xué);2014年
5 李佩;微波單片專用集成電路設(shè)計(jì)[D];電子科技大學(xué);2009年
6 王軻;微波寬帶低噪聲放大器研究[D];電子科技大學(xué);2015年
7 李凱;平衡式低噪聲放大器設(shè)計(jì)[D];電子科技大學(xué);2015年
8 趙艷陽;X波段限幅低噪聲放大器設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
9 李辛琦;1.2GHz CMOS低噪聲放大器的仿真設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2015年
10 孫海昕;基于CMOS工藝的射頻低噪聲放大器的設(shè)計(jì)[D];黑龍江大學(xué);2015年
,本文編號(hào):2510738
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2510738.html