天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

點(diǎn)云法向量估算研究

發(fā)布時間:2019-05-24 20:32
【摘要】:地面三維激光掃描技術(shù)作為新興的測繪數(shù)據(jù)獲取技術(shù),可以快速的獲取高密度、高精度反映物體表面信息的點(diǎn)云數(shù)據(jù),在逆向工程、文物保護(hù)、數(shù)字城市、變形監(jiān)測等多個領(lǐng)域得到廣泛應(yīng)用。獲取的點(diǎn)云數(shù)據(jù)大多數(shù)情況下并不具有拓?fù)湫畔?需要通過K近鄰來建立點(diǎn)之間的空間關(guān)系。一致定向的法向量場是許多數(shù)據(jù)處理工作的基礎(chǔ),而且定向的法向量能夠提供下墊面的一階逼近和內(nèi)外側(cè)區(qū)分。穩(wěn)健、定向的法向量估算和整個表面的重建工作一樣復(fù)雜。在數(shù)據(jù)獲取過程中,由于儀器自身存在的系統(tǒng)誤差、操作人員水平的高低、外界環(huán)境的干擾,使得掃描獲取的點(diǎn)云數(shù)據(jù)中存在噪聲與離群點(diǎn),獲取的數(shù)據(jù)不能真實(shí)反映掃描對象的幾何信息。目前,主要的點(diǎn)云法向量估算方法是基于主元分析法,主元分析法通過擬合點(diǎn)及其近鄰點(diǎn)的局部總體最小二乘平面,用該局部平面的法向量來近似代替點(diǎn)的法向量。算法對噪聲有一定的抑制作用,但對離群點(diǎn)較為敏感。需要對點(diǎn)云中含離群點(diǎn)時,如何準(zhǔn)確的估算法向量進(jìn)行進(jìn)一步研究。論文在點(diǎn)云法向量估算現(xiàn)有研究成果的基礎(chǔ)上,針對點(diǎn)云中存在離群點(diǎn)的情況進(jìn)行研究,主要工作為:1、介紹了地面三維激光掃描技術(shù)的發(fā)展現(xiàn)狀。包括三維激光掃描儀的工作原理、相應(yīng)的處理軟件,介紹了開源C++編程庫PCL(Point Cloud Library)及其基本功能,分析了法向量估算和方向調(diào)整的重點(diǎn)和難點(diǎn)和研究現(xiàn)狀。2、分析了兩種類型的K近鄰,介紹了對散亂點(diǎn)云數(shù)據(jù)建立空間索引的必要性,重點(diǎn)闡述和分析了Kd樹搜索算法的特點(diǎn),分析兩種點(diǎn)云數(shù)據(jù)格式,并利用PCL提供的Kd樹搜索算法實(shí)現(xiàn)了對點(diǎn)云近鄰點(diǎn)的搜索。3、介紹了基于Voroni圖和局部表面擬合的法向量估算,研究了以局部平面擬合為基礎(chǔ)的主元分析法,分析了主元分析法的總體最小二乘本質(zhì),推導(dǎo)了主元分析法的數(shù)學(xué)表達(dá)式,并采用主元分析法完成了點(diǎn)云法向量的估算。4、探討存在離群點(diǎn)時,采用主元分析法估算法向量的誤差問題,為了去除離群點(diǎn),推導(dǎo)了張量投票的閉合解,將點(diǎn)云表示為球張量,采用張量投票算法去除離群點(diǎn),實(shí)驗(yàn)結(jié)果表明該算法的有效性。
[Abstract]:As a new surveying and mapping data acquisition technology, ground 3D laser scanning technology can quickly obtain point cloud data with high density and high precision to reflect the surface information of objects, in reverse engineering, cultural relics protection, digital cities. Deformation monitoring and other fields have been widely used. In most cases, the obtained point cloud data does not have topological information, so it is necessary to establish the spatial relationship between points through K nearest neighbors. The uniformly oriented normal vector field is the basis of many data processing work, and the oriented normal vector can provide the first order approximation and the inner and outer side discrimination of the underlying surface. Robust, directional normal vector estimation is as complex as the reconstruction of the whole surface. In the process of data acquisition, due to the systematic error of the instrument itself, the level of operators and the interference of the external environment, there is noise and outliers in the point cloud data obtained by scanning. The obtained data can not truly reflect the geometric information of the scanned object. At present, the main point cloud normal vector estimation method is based on the principal component analysis method. The principal component analysis method uses the normal vector of the local plane to approximate the normal vector of the replacement point by fitting the local total least square plane of the point and its nearest neighbor. The algorithm has a certain suppression effect on noise, but it is sensitive to outliers. It is necessary to further study how to estimate the algorithm vector accurately when there are outliers in the point cloud. On the basis of the existing research results of point cloud vector estimation, this paper studies the existence of outliers in point cloud. The main work is as follows: 1. The development status of ground 3D laser scanning technology is introduced. Including the working principle of 3D laser scanner and the corresponding processing software, this paper introduces the open source C programming library PCL (Point Cloud Library) and its basic functions, and analyzes the key and difficult points and research status of normal vector estimation and direction adjustment. This paper analyzes two types of K nearest neighbors, introduces the necessity of establishing spatial index for scattered point cloud data, focuses on the characteristics of Kd tree search algorithm, and analyzes two kinds of point cloud data formats. The Kd tree search algorithm provided by PCL is used to search the nearest neighbor points of point cloud. 3. The normal vector estimation based on Voroni graph and local surface fitting is introduced, and the principal component analysis method based on local plane fitting is studied. In this paper, the essence of the total least square of principal component analysis is analyzed, the mathematical expression of principal component analysis is deduced, and the estimation of point cloud normal vector is completed by principal component analysis. 4, it is discussed that there are outliers. The principal component analysis (PCA) method is used to estimate the error of the algorithm vector. In order to remove the outliers, the closed solution of Zhang Liang's voting is derived, the point cloud is expressed as a spherical tensor, and the Zhang Liang voting algorithm is used to remove the outliers. The experimental results show the effectiveness of the algorithm.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN249

【參考文獻(xiàn)】

中國期刊全文數(shù)據(jù)庫 前10條

1 魯鐵定;周世健;張立亭;官云蘭;;基于整體最小二乘的地面激光掃描標(biāo)靶球定位方法[J];大地測量與地球動力學(xué);2009年04期

2 陳瑋嫻;袁慶;陳義;;約束總體最小二乘在點(diǎn)云拼接中的應(yīng)用[J];大地測量與地球動力學(xué);2011年02期

3 鄭坤;朱良峰;吳信才;劉修國;李菁;;3D GIS空間索引技術(shù)研究[J];地理與地理信息科學(xué);2006年04期

4 丁克良;沈云中;歐吉坤;;整體最小二乘法直線擬合[J];遼寧工程技術(shù)大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期

5 官云蘭;詹新武;程效軍;周世健;張立亭;;一種穩(wěn)健的地面激光掃描標(biāo)靶球定位方法[J];工程勘察;2008年10期

6 陳西江;花向紅;魯鐵定;魏成;張言鎖;;點(diǎn)云配準(zhǔn)中異常同名點(diǎn)探測方法研究[J];大地測量與地球動力學(xué);2013年03期

7 孫同賀;羅志才;;數(shù)字化曲線的整體最小二乘平差[J];工程勘察;2013年08期

8 方興;曾文憲;劉經(jīng)南;姚宜斌;;三維坐標(biāo)轉(zhuǎn)換的通用整體最小二乘算法[J];測繪學(xué)報(bào);2014年11期

9 李寶;程志全;黨崗;金士堯;;三維點(diǎn)云法向量估計(jì)綜述[J];計(jì)算機(jī)工程與應(yīng)用;2010年23期

10 熊邦書,何明一,俞華t,

本文編號:2485161


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2485161.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0e6a2***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com