基于圖像序列的人體運動跟蹤算法
發(fā)布時間:2019-04-21 17:54
【摘要】:為了提高人體運動的跟蹤精度,提出基于圖像序列的人體運動跟蹤算法。首先對當(dāng)前人體跟蹤算法的研究現(xiàn)狀進行分析,指出粒子濾波算法進行人體運動跟蹤的不足;然后對粒子濾波算法進行改進,增加了采樣粒子多樣化,提高非線性人體運動目標(biāo)跟蹤性能,加快人體運動跟蹤速度;最后采用仿真實驗對人體運動跟蹤算法的性能進行測試。實驗結(jié)果表明,相對于其他人體運動跟蹤算法,該算法提高了人體運動跟蹤的準(zhǔn)確性,而且人體運動跟蹤的時間減少,具有更好的穩(wěn)定性。
[Abstract]:In order to improve the tracking accuracy of human motion, a human motion tracking algorithm based on image sequence is proposed. Firstly, the current research status of human body tracking algorithm is analyzed, and the deficiency of particle filter algorithm in human motion tracking is pointed out. Then the particle filter algorithm is improved to increase the diversity of sampling particles to improve the tracking performance of nonlinear human moving targets and speed up the human motion tracking. Finally the performance of the human motion tracking algorithm is tested by simulation experiments. The experimental results show that compared with other human motion tracking algorithms, the proposed algorithm improves the accuracy of human motion tracking, and the time of human motion tracking is reduced, so it has better stability.
【作者單位】: 樂山師范學(xué)院;
【基金】:四川省科技廳支撐計劃項目(2014SZ0107)
【分類號】:TP391.41;TN713
本文編號:2462427
[Abstract]:In order to improve the tracking accuracy of human motion, a human motion tracking algorithm based on image sequence is proposed. Firstly, the current research status of human body tracking algorithm is analyzed, and the deficiency of particle filter algorithm in human motion tracking is pointed out. Then the particle filter algorithm is improved to increase the diversity of sampling particles to improve the tracking performance of nonlinear human moving targets and speed up the human motion tracking. Finally the performance of the human motion tracking algorithm is tested by simulation experiments. The experimental results show that compared with other human motion tracking algorithms, the proposed algorithm improves the accuracy of human motion tracking, and the time of human motion tracking is reduced, so it has better stability.
【作者單位】: 樂山師范學(xué)院;
【基金】:四川省科技廳支撐計劃項目(2014SZ0107)
【分類號】:TP391.41;TN713
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 蔣明;蔣毅;曾曉雁;;激光飛行標(biāo)刻運動跟蹤技術(shù)[J];中國激光;2007年02期
相關(guān)碩士學(xué)位論文 前1條
1 邵俊紅;基于KLT算法的運動跟蹤芯片的設(shè)計和實現(xiàn)[D];上海交通大學(xué);2008年
,本文編號:2462427
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2462427.html
最近更新
教材專著