天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

一維離散數(shù)據(jù)的卡爾曼濾波模型的參數(shù)估計(jì)及自適應(yīng)濾波算法的改進(jìn)

發(fā)布時(shí)間:2019-03-07 14:40
【摘要】:本文綜述了卡爾曼濾波的研究背景和現(xiàn)狀,詳細(xì)研究了線性卡爾曼濾波及非線性卡爾曼濾波,分析了它們的優(yōu)缺點(diǎn),討論了它們的應(yīng)用范圍。首先,基于一維離散狀態(tài)數(shù)據(jù)和觀測(cè)數(shù)據(jù),分別提出了狀態(tài)方程的參數(shù)估計(jì)法(SPL法)和觀測(cè)方程的參數(shù)估計(jì)法(OSL法)。第一種方法,先求出與當(dāng)前狀態(tài)數(shù)據(jù)相關(guān)的下一時(shí)刻狀態(tài)數(shù)據(jù)的概率分布,再利用最小二乘法估計(jì)出狀態(tài)方程中的參數(shù),最后得出狀態(tài)方程;第二種方法,在等分狀態(tài)數(shù)據(jù)和和觀測(cè)數(shù)據(jù)的基礎(chǔ)上,在每個(gè)區(qū)間內(nèi)用最小二乘法估計(jì)觀測(cè)矩陣,構(gòu)造出狀態(tài)變量和觀測(cè)矩陣之間的函數(shù)關(guān)系式,最終得到觀測(cè)方程。其次,對(duì)簡化的Sage-Husa自適應(yīng)濾波算法進(jìn)行了兩點(diǎn)改進(jìn)。第一點(diǎn),用觀測(cè)噪聲Rk-1代替觀測(cè)噪聲Rk,計(jì)算出卡爾曼增益Kk,解決了原算法中的死循環(huán)問題;第二點(diǎn),在原算法的基礎(chǔ)上增加了兩步,即先利用前面求得的觀測(cè)噪聲Rk重新計(jì)算卡爾曼增益Kk,再利用新的卡爾曼增益Kk重新計(jì)算估計(jì)值xk。接著,針對(duì)單時(shí)滯系統(tǒng),給出了具體的卡爾曼濾波算法,并且在狀態(tài)過程和觀測(cè)過程均為平穩(wěn)的情況下,提出了一種估計(jì)觀測(cè)延遲時(shí)間的方法。最后,實(shí)證分析了本文提出的上述方法,估計(jì)出狀態(tài)方程和觀測(cè)方程的相應(yīng)參數(shù)以及觀測(cè)延遲時(shí)間,并利用本文提出的評(píng)價(jià)函數(shù)R(s)驗(yàn)證了這些方法的有效性。
[Abstract]:In this paper, the research background and present situation of Kalman filter are summarized, linear Kalman filter and nonlinear Kalman filter are studied in detail, their advantages and disadvantages are analyzed, and their application scope is discussed. Firstly, based on one-dimensional discrete state data and observation data, the parameter estimation method of equation of state (SPL method) and the parameter estimation method of observation equation (OSL method) are proposed respectively. In the first method, the probability distribution of the next state data related to the current state data is obtained first, then the parameters in the state equation are estimated by the least square method, and finally the state equation is obtained. In the second method, on the basis of the equal state data and the sum observation data, the observation matrix is estimated by the least square method in each interval, and the function relation between the state variable and the observation matrix is constructed, and finally the observation equation is obtained. Secondly, two improvements are made to the simplified Sage-Husa adaptive filtering algorithm. Firstly, the Kalman gain Kk, is calculated by using observation noise Rk-1 instead of observation noise Rk, to solve the dead loop problem in the original algorithm. Second, two steps are added on the basis of the original algorithm, that is, the Kalman gain Kk, is recalculated by the observation noise Rk obtained before and the estimated xk. is recalculated by the new Kalman gain Kk. Then, for the single time-delay system, a specific Kalman filter algorithm is given, and a method to estimate the observation delay time is proposed under the condition that both the state process and the observation process are stationary. Finally, the above-mentioned methods are empirically analyzed, the corresponding parameters of the state equation and observation equation and the observation delay time are estimated, and the effectiveness of these methods is verified by using the evaluation function R (s) proposed in this paper.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN713

【參考文獻(xiàn)】

相關(guān)期刊論文 前5條

1 徐天河,楊元喜;改進(jìn)的Sage自適應(yīng)濾波方法[J];測(cè)繪科學(xué);2000年03期

2 楊元喜;;動(dòng)態(tài)Kalman濾波模型誤差的影響[J];測(cè)繪科學(xué);2006年01期

3 趙留彥;;中國通脹預(yù)期的卡爾曼濾波估計(jì)[J];經(jīng)濟(jì)學(xué)(季刊);2005年03期

4 劉曉輝;陳小平;;基于擴(kuò)展卡爾曼濾波的主動(dòng)視覺跟蹤技術(shù)[J];計(jì)算機(jī)輔助工程;2007年02期

5 耿延睿;李大字;郭文榮;;衰減因子自適應(yīng)估計(jì)卡爾曼濾波比較研究[J];控制工程;2006年S2期

相關(guān)碩士學(xué)位論文 前1條

1 蘇云鵬;基于卡爾曼類濾波方法的利率期限結(jié)構(gòu)模型估計(jì)研究[D];天津大學(xué);2007年

,

本文編號(hào):2436202

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2436202.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶30f49***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com