基于65nm CMOS的10位低功耗逐次逼近ADC
[Abstract]:With the development of modern science and technology, implantable biomedical devices have become one of the hot research directions. Compared with the traditional portable medical equipment, it is more flexible and has a very important significance for the diagnosis and treatment of diseases. However, how to make implantable medical devices safer and more stable for the benefit of patients still faces enormous challenges, especially for implanted chips, not only in terms of their shape and size, but also because of their anatomical location. The power dissipation of the chip can also damage the anatomical tissue. Successive approximation (SAR:Successive-Approximation-Register) A / D converter (ADC: Analog-to-Digital Converter) is widely used in biomedical electronics due to its simple structure, small area and low power consumption. This paper focuses on the optimization of power consumption and area of SAR ADC, circuit design, layout design and simulation verification for implanted biochip applications. In this paper, a low power 10-bit SAR ADC, is designed, which consists of a sampling / holding circuit, a D / A conversion network, a comparator and a SAR logic control circuit. By studying the different circuit structure of each module and discussing the non-ideal factors that affect the circuit performance, the traditional charge redistribution SAR ADC circuit is improved and optimized. The design results meet the low power requirement of implanted biochip. The main design projects are as follows: 1. Because capacitance array does not consume static power, charge redistribution structure is the main structure of low power SAR ADC. A novel D / A conversion network based on piecewise capacitor array and its switching timing are proposed. The structure of redundant capacitors in piecewise capacitor array is mainly improved, compared with the existing D / A conversion network. Effectively reduced power consumption and area. 2. The SAR ADC designed in this paper adopts differential input structure based on the sampling of upper pole plate. On the one hand, the differential input structure can suppress common-mode interference and improve the performance of ADC. On the other hand, the sampling of upper pole plate can effectively reduce the size of input capacitor array. Conducive to power consumption and area optimization. 3. In other module circuits, the sampling / holding part uses bootstrap switch to sample the input analog signal, and its relatively constant on-resistance ensures the linearity of the sampling circuit. The SAR ADC comparator designed in this paper adopts a two-stage cascade dynamic structure, which effectively reduces the static power consumption of the whole ADC. The logic control part of SAR uses a circuit composed of dynamic cells, which greatly reduces the complexity of the logic circuit and reduces the power consumption and area of the digital circuit. The whole 10-bit SAR ADC is realized by 65nm CMOS process design, and is designed and verified by Cadence and Matlab tools. When the supply voltage and reference voltage are 0.8V, the sampling rate is 50KS / s and the input is 1.5KHz differential sinusoidal signal, the signal to noise distortion ratio (SNDR:Signal-to-Noise-and-Distortion Ratio) of the whole SAR ADC is 61.42 dB. The number of significant bits (ENOB:Effective Number of Bits) is 9.91, power consumption is 423nW, FoM:Figure of Merit) is 8.7 fJ / Conv. Step. The SAR ADC area designed in this paper is 136 渭 m 脳 176 渭 m, which is very suitable for biochip implantation.
【學(xué)位授予單位】:西安郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN792
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王向陽,楊紅穎;基于改進(jìn)逐次逼近量化與復(fù)雜關(guān)聯(lián)模型的零樹圖像編碼算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2002年06期
2 劉天順;用二片8位D/A構(gòu)成16位A/D變換器[J];電子技術(shù)應(yīng)用;1987年06期
3 萬明康;陳國軍;王大鳴;;基于FPGA的開方運(yùn)算實(shí)現(xiàn)[J];數(shù)據(jù)采集與處理;2006年S1期
4 朱明;逐次逼近作圖法——介紹一種計(jì)算主軸坐標(biāo)的新方法[J];組合機(jī)床通訊;1974年04期
5 何樂生;宋愛國;黃惟一;;現(xiàn)代高精度逐次逼近式數(shù)模轉(zhuǎn)換器使用中的幾個(gè)問題[J];傳感技術(shù)學(xué)報(bào);2006年01期
6 徐太龍;薛峰;蔡志匡;鄭長勇;;快速全數(shù)字逐次逼近寄存器延時(shí)鎖定環(huán)的設(shè)計(jì)[J];計(jì)算機(jī)工程;2014年04期
7 王百鳴;一種基于流水逐次逼近比較方式的模/數(shù)轉(zhuǎn)換器[J];微電子學(xué);2001年02期
8 陳鋮穎;黑勇;胡曉宇;;一種軌至軌10位逐次逼近模數(shù)轉(zhuǎn)換器的設(shè)計(jì)[J];微電子學(xué);2012年05期
9 吳葆仁;;漸近平衡法用于海洋儀器的數(shù)字化[J];海洋技術(shù);1979年04期
10 彭新芒;楊銀堂;朱樟明;;采用SAR結(jié)構(gòu)的8通道12位ADC設(shè)計(jì)[J];電子設(shè)計(jì)應(yīng)用;2006年11期
相關(guān)會(huì)議論文 前1條
1 魏微;陸衛(wèi)國;王錚;;電容陣列式逐次逼近模數(shù)變換器的誤差分析及刻度[A];第十六屆全國核電子學(xué)與核探測技術(shù)學(xué)術(shù)年會(huì)論文集(上冊)[C];2012年
相關(guān)重要報(bào)紙文章 前1條
1 江蘇徐州技師學(xué)院機(jī)電系 李偉民;“曹沖稱象”與逐次逼近式A/D轉(zhuǎn)換器的工作原理[N];電子報(bào);2008年
相關(guān)博士學(xué)位論文 前3條
1 盧宇瀟;氋速低功耗逐次逼近式ADC研究與實(shí)現(xiàn)[D];上海交通大學(xué);2014年
2 武海軍;混合結(jié)構(gòu)逐次逼近模數(shù)轉(zhuǎn)換器研究與設(shè)計(jì)[D];華南理工大學(xué);2014年
3 黃亮;變壓器局部放電源的半定松弛逐次逼近定位方法研究[D];重慶大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 孫甜甜;基于65nm CMOS的10位低功耗逐次逼近ADC[D];西安郵電大學(xué);2016年
2 劉韋韋;新型逐次逼近寄存器延時(shí)鎖定環(huán)的設(shè)計(jì)[D];安徽大學(xué);2012年
3 孫彤;低功耗逐次逼近模數(shù)轉(zhuǎn)換器的研究與設(shè)計(jì)[D];清華大學(xué);2007年
4 尚曉丹;逐次逼近ADC的算法研究[D];四川大學(xué);2006年
5 高翔;逐次逼近式ADC的功耗與精度平衡設(shè)計(jì)研究[D];西安電子科技大學(xué);2010年
6 肖培磊;一種10位逐次逼近ADC的設(shè)計(jì)[D];電子科技大學(xué);2010年
7 張斌;用于微加速度計(jì)電容自校準(zhǔn)電路的逐次逼近ADC設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2012年
8 沈易;逐次逼近—流水線混合型模數(shù)轉(zhuǎn)換器研究[D];西安電子科技大學(xué);2014年
9 徐雷;寬范圍全數(shù)字逐次逼近寄存器延時(shí)鎖定環(huán)的設(shè)計(jì)[D];安徽大學(xué);2012年
10 唐重林;甚低功耗SAR ADC的結(jié)構(gòu)設(shè)計(jì)與控制技術(shù)[D];西安電子科技大學(xué);2008年
,本文編號(hào):2403033
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2403033.html