天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

基于非晶硅的雙層微測(cè)輻射熱計(jì)可靠性研究

發(fā)布時(shí)間:2019-01-02 15:10
【摘要】:非制冷型微測(cè)輻射熱計(jì)具有功耗低、易攜帶及產(chǎn)量大等優(yōu)勢(shì),在軍事和民用兩方面有著廣泛的發(fā)展前景。然而,傳統(tǒng)微測(cè)輻射熱計(jì)都是采用單層微橋結(jié)構(gòu)設(shè)計(jì),熱敏感層與紅外吸收層都在同一個(gè)層面內(nèi),不利于器件性能的進(jìn)一步提升。本文以雙層微橋結(jié)構(gòu)非晶硅微測(cè)輻射熱計(jì)為研究對(duì)象,通過理論分析和仿真驗(yàn)證,探討了熱學(xué)及動(dòng)力學(xué)基本性能,并針對(duì)MEMS微機(jī)電系統(tǒng)封裝工藝,分析討論了在稀薄氣體環(huán)境下真空下降對(duì)器件性能的影響。最后,在大量仿真數(shù)據(jù)分析對(duì)比的基礎(chǔ)上,提出了一種新型耐振動(dòng)沖擊的雙層微橋結(jié)構(gòu)非晶硅微測(cè)輻射熱計(jì)設(shè)計(jì)。微橋結(jié)構(gòu)熱導(dǎo)值G的大小隨著橋腿長(zhǎng)度的減小以及橋腿寬度和厚度的增加而增加;熱時(shí)間常數(shù)τ與橋腿長(zhǎng)度成正比而與橋腿寬度成反比,并且相同結(jié)構(gòu)尺寸的非晶硅微測(cè)輻射熱計(jì)的熱導(dǎo)值和熱時(shí)間常數(shù)值,都比氧化釩微測(cè)輻射熱計(jì)低。橋面結(jié)構(gòu)溫升?T正比于橋腿的長(zhǎng)度而反比于其寬度和厚度。在相同的外界輻射條件下,非晶硅微測(cè)輻射熱計(jì)的溫升?T也比氧化釩器件的要高。諧響應(yīng)分析結(jié)果表明,I型傘狀雙層微橋結(jié)構(gòu)在經(jīng)受外界振動(dòng)激勵(lì)時(shí),橋面是形變量最大的地方,而集中應(yīng)力最大的地方出現(xiàn)在熱敏感層橋面與橋腿的連接處。當(dāng)振動(dòng)頻率接近其共振頻率時(shí),X、Y、Z三個(gè)方向都出現(xiàn)了共振,其中最大位移形變量達(dá)到了0.031μm。如此大的位移形變很容易使微橋結(jié)構(gòu)在振動(dòng)過程中發(fā)生撕裂、坍塌,導(dǎo)致紅外吸收層與熱敏感層或者襯底與熱敏感層發(fā)生永久性粘連而使探測(cè)器遭受損壞。當(dāng)沖擊峰值加速度為1000 g、脈沖寬度為1 ms時(shí),微橋結(jié)構(gòu)出現(xiàn)位移峰值的時(shí)刻與脈沖波的峰值點(diǎn)在時(shí)間上有大約0.2 ms的時(shí)間延遲,最大位移形變值為0.59μm,熱敏感層與襯底之間的微腔厚度為1μm,如此大的振動(dòng)位移變形,很有可能會(huì)導(dǎo)致熱敏感層與襯底發(fā)生永久性沾粘。X方向振動(dòng)時(shí)的最大應(yīng)力為0.027 MPa,應(yīng)力集中在橋腿與橋面的連接處;Y方向振動(dòng)時(shí)的最大應(yīng)力為0.07 MPa,應(yīng)力集中在橋腿與橋面的連接處;Z方向振動(dòng)時(shí)的最大應(yīng)力比其它兩個(gè)方向大了一個(gè)數(shù)量級(jí),高達(dá)0.11 MPa,且應(yīng)力集中在橋腿與橋面的連接處,該應(yīng)力值已經(jīng)超過結(jié)構(gòu)處于張應(yīng)力狀態(tài)下的一階屈曲值,此時(shí)微橋?qū)?huì)處于非常不穩(wěn)定的狀態(tài)。真空封裝作為MEMS器件加工的一個(gè)重要環(huán)節(jié),封裝后腔體的真空度對(duì)微型芯片結(jié)構(gòu)的可靠性有較大的影響。影響MEMS器件真空封裝好壞的因素有很多,如封裝工藝的缺陷、材料(比如粘接劑等化學(xué)用品)緩慢釋放以及封裝所用外殼的堅(jiān)固程度等。一旦密封腔體發(fā)生真空泄漏導(dǎo)致少量氣體混入其中,會(huì)使微橋結(jié)構(gòu)在經(jīng)受外界振動(dòng)和沖擊等激勵(lì)作用時(shí)承受更大的壓力。仿真研究表明,稀薄氣體氣壓越高,對(duì)微橋結(jié)構(gòu)所產(chǎn)生的壓強(qiáng)也就越大。
[Abstract]:The uncooled microbolometer has the advantages of low power consumption, easy to carry and large output, so it has a wide development prospect in both military and civil fields. However, the traditional microbolometer is designed with single-layer microbridge structure. The thermal sensitive layer and infrared absorption layer are in the same layer, which is not conducive to the further improvement of device performance. In this paper, a double-layer microbridge amorphous silicon microbolometer is studied. The basic thermal and dynamic properties are discussed by theoretical analysis and simulation, and the encapsulation process of MEMS is discussed. The effect of vacuum drop on device performance in rarefied gas environment is analyzed and discussed. Finally, based on the analysis and comparison of a large number of simulation data, a new type of double-layer microbridge structure amorphous silicon microbolometer is proposed. The thermal conductivity G of the micro-bridge structure increases with the decrease of leg length and the increase of the width and thickness of the bridge leg. The thermal time constant 蟿 is directly proportional to the length of the bridge leg and inversely proportional to the width of the bridge leg, and the thermal conductivity and thermal time constant of the amorphous silicon microbolometer of the same structure are lower than that of the vanadium oxide microbolometer. The temperature rise of the deck structure is proportional to the length of the bridge leg and inversely to the width and thickness of the bridge leg. Under the same external radiation conditions, the temperature rise of amorphous silicon microbolometer is also higher than that of vanadium oxide device. The results of harmonic response analysis show that the bridge deck of type I umbrella microbridge structure is the place with the largest deformation when subjected to external vibration, while the maximum concentrated stress occurs at the junction between the bridge deck and the leg of the heat-sensitive layer. When the vibration frequency is close to its resonance frequency, all the three directions of XFY Z have resonance, in which the maximum displacement deformation reaches 0.031 渭 m. Such a large displacement deformation can easily tear the micro-bridge structure apart and collapse during vibration, resulting in the permanent adhesion between the infrared absorption layer and the thermosensitive layer or the substrate and the thermosensitive layer, thus causing damage to the detector. When the impact peak acceleration is 1000 g and the pulse width is 1 ms, the peak displacement of the bridge structure and the peak point of the pulse wave have a time delay of about 0.2 ms, and the maximum displacement deformation value is 0.59 渭 m. The thickness of the microcavity between the thermal sensitive layer and the substrate is 1 渭 m. Such a large vibration displacement deformation is likely to lead to permanent adhesion between the thermal sensitive layer and the substrate. The maximum stress in the X direction vibration is 0.027 MPa,. The stress is concentrated on the joint between the bridge leg and the bridge deck; The maximum stress of Y-direction vibration is 0.07 MPa, stress concentrated on the joint between the bridge leg and the bridge deck. The maximum stress in Z direction is an order of magnitude greater than that in the other two directions, and is up to 0. 11 MPa, and the stress is concentrated at the junction between the bridge leg and the bridge deck. The stress value has exceeded the first order buckling value of the structure under the state of tensile stress. At this point, the microbridge will be in a very unstable state. Vacuum packaging is an important part in the fabrication of MEMS devices. The vacuum degree of the cavity after packaging has a great influence on the reliability of microchip structure. There are many factors that influence the vacuum packaging of MEMS devices, such as the defects of packaging process, the slow release of materials (such as adhesives and other chemical supplies) and the firmness of the shells used in packaging. Once a small amount of gas is mixed into the sealed cavity due to vacuum leakage, the micro-bridge structure will be subjected to more pressure when it is subjected to external vibration and shock. The simulation results show that the higher the gas pressure, the greater the pressure on the micro bridge structure.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN215

【共引文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張升康,陳重,馮來,崔正勤;表面控溫紅外智能隱身材料系統(tǒng)的研制[J];表面技術(shù);2004年01期

2 張興周,蘇運(yùn)東;熱釋電紅外探測(cè)警戒系統(tǒng)[J];傳感器技術(shù);1997年05期

3 趙明遠(yuǎn),唐艷;非致冷型焦平面陣列設(shè)計(jì)特性分析[J];傳感器世界;2003年02期

4 馮濤;李新;蔡睿潔;趙念;谷咸平;;熱釋電紅外敏感器的溫差響應(yīng)特性[J];彈箭與制導(dǎo)學(xué)報(bào);2010年05期

5 戴文偉 ,李新光;PIC單片機(jī)在點(diǎn)火源探測(cè)系統(tǒng)中的應(yīng)用[J];電子技術(shù);2002年10期

6 劉任平,孫增圻,葉榛,李實(shí);基于SC6121芯片的足球機(jī)器人紅外線通信系統(tǒng)[J];電子技術(shù)應(yīng)用;2000年11期

7 李格,袁寧一,李金華;熱釋電單元探測(cè)器的電壓響應(yīng)模擬[J];電子器件;2002年04期

8 段萍,高澤紅,許矢林;單片微機(jī)紅外報(bào)警系統(tǒng)的研制[J];光電子技術(shù)與信息;2005年03期

9 李金華,李坤,陳燕陳,王麗華,蔡忠龍;PT/P(VDF-TrFE)/多孔氧化硅襯底熱釋電傳感器研制[J];功能材料與器件學(xué)報(bào);1998年01期

10 張佳一;;熱釋電紅外傳感器放大電路的設(shè)計(jì)及其應(yīng)用[J];廣西通信技術(shù);2010年03期

相關(guān)博士學(xué)位論文 前10條

1 白俊奇;高分辨率紅外成像中的圖像處理算法研究[D];南京理工大學(xué);2010年

2 汪濤;UMBIRFPA的計(jì)算機(jī)仿真及非均勻性校正研究[D];重慶大學(xué);2001年

3 賈功賢;基于VI的IRFPA ROIC參數(shù)測(cè)試及熱釋電FPA凝視成像技術(shù)研究[D];重慶大學(xué);2001年

4 張曉飛;基于DSP的紅外焦平面陣列非均勻性校正技術(shù)研究[D];重慶大學(xué);2002年

5 徐崢誼;微機(jī)械熱電堆紅外探測(cè)器[D];中國科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所);2002年

6 袁寧一;氧化釩紅外敏感膜和非致冷焦平面成像陣列研究[D];中國科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所);2002年

7 袁小武;鈦酸鉛鑭鈣系鐵電薄膜的制備及其性能研究[D];四川大學(xué);2005年

8 張清濤;PMNT鐵電薄/厚膜及其MEMS致冷器制備工藝的研究[D];中國科學(xué)院研究生院(電工研究所);2006年

9 王宏臣;氧化釩薄膜及非致冷紅外探測(cè)器陣列研究[D];華中科技大學(xué);2006年

10 胡文成;熱釋電機(jī)理及BST薄膜性能研究[D];電子科技大學(xué);2008年

,

本文編號(hào):2398654

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2398654.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶85695***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com