基于非晶硅的雙層微測(cè)輻射熱計(jì)可靠性研究
[Abstract]:The uncooled microbolometer has the advantages of low power consumption, easy to carry and large output, so it has a wide development prospect in both military and civil fields. However, the traditional microbolometer is designed with single-layer microbridge structure. The thermal sensitive layer and infrared absorption layer are in the same layer, which is not conducive to the further improvement of device performance. In this paper, a double-layer microbridge amorphous silicon microbolometer is studied. The basic thermal and dynamic properties are discussed by theoretical analysis and simulation, and the encapsulation process of MEMS is discussed. The effect of vacuum drop on device performance in rarefied gas environment is analyzed and discussed. Finally, based on the analysis and comparison of a large number of simulation data, a new type of double-layer microbridge structure amorphous silicon microbolometer is proposed. The thermal conductivity G of the micro-bridge structure increases with the decrease of leg length and the increase of the width and thickness of the bridge leg. The thermal time constant 蟿 is directly proportional to the length of the bridge leg and inversely proportional to the width of the bridge leg, and the thermal conductivity and thermal time constant of the amorphous silicon microbolometer of the same structure are lower than that of the vanadium oxide microbolometer. The temperature rise of the deck structure is proportional to the length of the bridge leg and inversely to the width and thickness of the bridge leg. Under the same external radiation conditions, the temperature rise of amorphous silicon microbolometer is also higher than that of vanadium oxide device. The results of harmonic response analysis show that the bridge deck of type I umbrella microbridge structure is the place with the largest deformation when subjected to external vibration, while the maximum concentrated stress occurs at the junction between the bridge deck and the leg of the heat-sensitive layer. When the vibration frequency is close to its resonance frequency, all the three directions of XFY Z have resonance, in which the maximum displacement deformation reaches 0.031 渭 m. Such a large displacement deformation can easily tear the micro-bridge structure apart and collapse during vibration, resulting in the permanent adhesion between the infrared absorption layer and the thermosensitive layer or the substrate and the thermosensitive layer, thus causing damage to the detector. When the impact peak acceleration is 1000 g and the pulse width is 1 ms, the peak displacement of the bridge structure and the peak point of the pulse wave have a time delay of about 0.2 ms, and the maximum displacement deformation value is 0.59 渭 m. The thickness of the microcavity between the thermal sensitive layer and the substrate is 1 渭 m. Such a large vibration displacement deformation is likely to lead to permanent adhesion between the thermal sensitive layer and the substrate. The maximum stress in the X direction vibration is 0.027 MPa,. The stress is concentrated on the joint between the bridge leg and the bridge deck; The maximum stress of Y-direction vibration is 0.07 MPa, stress concentrated on the joint between the bridge leg and the bridge deck. The maximum stress in Z direction is an order of magnitude greater than that in the other two directions, and is up to 0. 11 MPa, and the stress is concentrated at the junction between the bridge leg and the bridge deck. The stress value has exceeded the first order buckling value of the structure under the state of tensile stress. At this point, the microbridge will be in a very unstable state. Vacuum packaging is an important part in the fabrication of MEMS devices. The vacuum degree of the cavity after packaging has a great influence on the reliability of microchip structure. There are many factors that influence the vacuum packaging of MEMS devices, such as the defects of packaging process, the slow release of materials (such as adhesives and other chemical supplies) and the firmness of the shells used in packaging. Once a small amount of gas is mixed into the sealed cavity due to vacuum leakage, the micro-bridge structure will be subjected to more pressure when it is subjected to external vibration and shock. The simulation results show that the higher the gas pressure, the greater the pressure on the micro bridge structure.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN215
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張升康,陳重,馮來,崔正勤;表面控溫紅外智能隱身材料系統(tǒng)的研制[J];表面技術(shù);2004年01期
2 張興周,蘇運(yùn)東;熱釋電紅外探測(cè)警戒系統(tǒng)[J];傳感器技術(shù);1997年05期
3 趙明遠(yuǎn),唐艷;非致冷型焦平面陣列設(shè)計(jì)特性分析[J];傳感器世界;2003年02期
4 馮濤;李新;蔡睿潔;趙念;谷咸平;;熱釋電紅外敏感器的溫差響應(yīng)特性[J];彈箭與制導(dǎo)學(xué)報(bào);2010年05期
5 戴文偉 ,李新光;PIC單片機(jī)在點(diǎn)火源探測(cè)系統(tǒng)中的應(yīng)用[J];電子技術(shù);2002年10期
6 劉任平,孫增圻,葉榛,李實(shí);基于SC6121芯片的足球機(jī)器人紅外線通信系統(tǒng)[J];電子技術(shù)應(yīng)用;2000年11期
7 李格,袁寧一,李金華;熱釋電單元探測(cè)器的電壓響應(yīng)模擬[J];電子器件;2002年04期
8 段萍,高澤紅,許矢林;單片微機(jī)紅外報(bào)警系統(tǒng)的研制[J];光電子技術(shù)與信息;2005年03期
9 李金華,李坤,陳燕陳,王麗華,蔡忠龍;PT/P(VDF-TrFE)/多孔氧化硅襯底熱釋電傳感器研制[J];功能材料與器件學(xué)報(bào);1998年01期
10 張佳一;;熱釋電紅外傳感器放大電路的設(shè)計(jì)及其應(yīng)用[J];廣西通信技術(shù);2010年03期
相關(guān)博士學(xué)位論文 前10條
1 白俊奇;高分辨率紅外成像中的圖像處理算法研究[D];南京理工大學(xué);2010年
2 汪濤;UMBIRFPA的計(jì)算機(jī)仿真及非均勻性校正研究[D];重慶大學(xué);2001年
3 賈功賢;基于VI的IRFPA ROIC參數(shù)測(cè)試及熱釋電FPA凝視成像技術(shù)研究[D];重慶大學(xué);2001年
4 張曉飛;基于DSP的紅外焦平面陣列非均勻性校正技術(shù)研究[D];重慶大學(xué);2002年
5 徐崢誼;微機(jī)械熱電堆紅外探測(cè)器[D];中國科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所);2002年
6 袁寧一;氧化釩紅外敏感膜和非致冷焦平面成像陣列研究[D];中國科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所);2002年
7 袁小武;鈦酸鉛鑭鈣系鐵電薄膜的制備及其性能研究[D];四川大學(xué);2005年
8 張清濤;PMNT鐵電薄/厚膜及其MEMS致冷器制備工藝的研究[D];中國科學(xué)院研究生院(電工研究所);2006年
9 王宏臣;氧化釩薄膜及非致冷紅外探測(cè)器陣列研究[D];華中科技大學(xué);2006年
10 胡文成;熱釋電機(jī)理及BST薄膜性能研究[D];電子科技大學(xué);2008年
,本文編號(hào):2398654
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2398654.html