光TSV損耗特性與耦合特性的研究
[Abstract]:TSV (Through-Silicon Vias, silicon perforation) technology can significantly reduce the length of wires between chip layers, so it has become the core technology of 3D integrated circuit technology. Optical TSV has the advantages of both optical waveguide and electric TSV. Compared with electric TSV, optical TSV has more bandwidth, less parasitic effect and stronger anti-jamming ability. Therefore, optical TSV has become another new area of 3D integration technology. The loss characteristics of optical TSV are significantly affected by such factors as core diameter, longitudinal height and light source wavelength. In addition, the optical TSV is based on the TSV process, so the defects caused by the TSV process will also affect the performance of the optical TSV. In order to improve the integration of optical TSV as much as possible, the distance between optical TSV should be as small as possible. However, when the spacing between TSV decreases, the coupling effect between optical TSV will increase. In this paper, RSOFT software is used to study the loss and coupling characteristics of optical TSV. In the aspect of loss characteristics of optical TSV, the influence of optical TSV structure parameters and light source wavelength on the loss characteristics is studied in this paper. The simulation results show that the transmission loss of optical TSV decreases with the increase of core diameter and increases with the increase of light source wavelength and longitudinal height. Secondly, the loss characteristics of optical TSV under different side-wall conditions are studied. The results show that the higher the side wall is, the greater the transmission loss of TSV is, and the loss degree is related to the selection of the incident end face, the transmission loss of light TSV with rough side wall is higher than that with smooth side wall light TSV. For the light TSV whose sidewall is rough and inclined, the effect of sidewall roughness on the transmission loss of optical TSV is less than that of sidewall inclination. In terms of the coupling characteristics of optical TSV, the influence of the spacing between adjacent optical TSV on the coupling characteristics is studied in this paper. The simulation results show that the coupling effect of two adjacent TSV decreases with the increase of their spatial distance. Secondly, the coupling characteristics of optical TSV under different side-wall conditions are studied. The results show that the coupling effect of smooth light TSV is smaller than that of rough type light TSV, and the coupling effect of smooth light TSV is much smaller than that of rough type light TSV. The coupling effect of the side-wall tilted TSV on the adjacent light TSV is greater than that of the positive incident side-wall tilted light TSV. The light TSV with the rough type is all concave and has more coupling effect on the adjacent light TSV than the light TSV with the rough type all protruding. The coupling effect of the TSV on the adjacent optical TSV is larger than that of the TSV with the rough oblique side wall on the positive incident side wall, and the coupling effect of the optical TSV on the adjacent optical TSV is larger than that on the side wall with the opposite incidence. The combined effect of the rough side wall and the positive incident mode increases the coupling effect of the coarse oblique optical TSV on the adjacent optical TSV.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN40;TP319
【參考文獻】
相關(guān)期刊論文 前10條
1 燕英強;吉勇;明雪飛;;3D-TSV封裝技術(shù)[J];電子與封裝;2014年07期
2 屈婷婷;劉戟鋒;;ENIAC——一項顛覆性創(chuàng)新的歷史探究[J];求索;2014年02期
3 王龍興;;集成電路的過去、現(xiàn)在和將來(一)世界集成電路的發(fā)展歷史[J];集成電路應(yīng)用;2014年01期
4 王志;龐誠;平野;任曉黎;于大全;;粗糙側(cè)壁對硅通孔互連結(jié)構(gòu)高頻性能的影響(英文)[J];科學(xué)技術(shù)與工程;2013年18期
5 鄧小軍;曹正州;;應(yīng)用于三維封裝中的硅通孔技術(shù)[J];電子與封裝;2012年09期
6 陳飚;;集成電路技術(shù)的發(fā)展[J];微處理機;2011年03期
7 郎鵬;高志方;牛艷紅;;3D封裝與硅通孔(TSV)工藝技術(shù)[J];電子工藝技術(shù);2009年06期
8 施勁松,胡越明;微處理器芯片技術(shù)的發(fā)展及展望[J];微型電腦應(yīng)用;2002年12期
9 王陽元,康晉鋒;超深亞微米集成電路中的互連問題——低k介質(zhì)與Cu的互連集成技術(shù)[J];半導(dǎo)體學(xué)報;2002年11期
10 郝旭丹,金娜,王明皓;三維封裝疊層技術(shù)[J];微處理機;2001年04期
相關(guān)重要報紙文章 前1條
1 李劍峰;;從電子管、晶體管,到CPU的誕生[N];電腦報;2014年
相關(guān)博士學(xué)位論文 前4條
1 張少梅;LiNbO_3的光波導(dǎo)特性研究和平板光子晶體結(jié)構(gòu)的制備[D];山東大學(xué);2011年
2 殷源;干涉型集成光波導(dǎo)器件設(shè)計與實驗研究[D];浙江大學(xué);2010年
3 李康;光波導(dǎo)器件的高階FDTD并行仿真分析[D];山東大學(xué);2006年
4 曹共柏;SOI基光波導(dǎo)器件的模擬與實現(xiàn)[D];中國科學(xué)院研究生院(上海微系統(tǒng)與信息技術(shù)研究所);2006年
相關(guān)碩士學(xué)位論文 前8條
1 張在涌;光互連限幅放大器與矩形Y分支光波導(dǎo)的設(shè)計[D];西安電子科技大學(xué);2013年
2 施祖軍;SOI納米光波導(dǎo)的研究及其工藝制作[D];華中科技大學(xué);2011年
3 鳳蘭;用有限差分光束傳播法計算光波導(dǎo)橫模[D];內(nèi)蒙古大學(xué);2008年
4 彭亞雄;基于EOPCB的聚合物波導(dǎo)研究[D];華中科技大學(xué);2007年
5 呂建剛;光波導(dǎo)有限元時域束傳輸法分析[D];東南大學(xué);2006年
6 耿和平;鉺鐿共摻光波導(dǎo)放大器的模擬與優(yōu)化[D];吉林大學(xué);2004年
7 劉昊;有機聚合物光波導(dǎo)的研究[D];東南大學(xué);2004年
8 曹萌;分支光波導(dǎo)數(shù)值模擬[D];河北工業(yè)大學(xué);2004年
,本文編號:2361188
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2361188.html