北斗導航型接收終端簡化型穩(wěn)健平方根容積卡爾曼濾波
[Abstract]:This paper focuses on reducing the complexity of the algorithm in dynamic location, reducing the computational complexity, improving the computational efficiency, solving the mismatch of the dynamic location model, and using a single model with large error. To solve the problem that the state noise and measurement noise are non-Gao Si white noise in dynamic positioning, three kinds of problems are studied. The main contents and innovations are as follows: 1. The carrier state equation based on satellite navigation is linear, and the weighted sum of the volume points transferred by the state transfer matrix is zero when the robust square root volume (Square root Cubature Kalman Filtering-SCKF) is updated. The standard KF algorithm can be used to update the state, and the SCKF; is still used in the measurement update process. In this paper, a simplified robust square-root volume Kalman algorithm (Simplified SCKF, for SSCKF). Is proposed. This algorithm aims to solve the problem of large amount of computation and low efficiency in dynamic navigation. The simulation and measured data show that the precision of SSCKF is equal to that of SCKF, and the solution time is about 25% lower than that of SCKF algorithm, which can effectively reduce the complexity of the algorithm and improve the efficiency of the algorithm. 2. Based on SSCKF, and variable dimensional interactive multimode theory, a simplified robust square root volume variable dimension interactive multimode algorithm is proposed. In order to solve the problem of model competition caused by incomplete coverage of conventional interactive multimode model set and excessive number of models, the model with different dimensions, such as uniform model and uniform acceleration model, is filtered in parallel at the same time. The corresponding likelihood function is calculated from the measurement residuals of the two models, the weight of the filtering results of the two models is updated, and the final weighted sum is taken as the output of the whole variable-dimensional model. The state input value of the next sub-model does not use its own filtering result at the last moment, but the global output of the variable dimensional interactive model is multiplied by the value obtained by the dimension conversion matrix. This ensures the accuracy of the state input values at each time. 3. In view of the fact that the state noise and the measurement noise generally present non-Gao Si white noise in the dynamic navigation process, this paper presents a simplified SCKF Gao Si and algorithm. The kurtosis and correlation coefficient of pseudo-range measurement noise in dynamic navigation are analyzed. If the non-Gao Si noise in the actual motion is still forced to be treated as Gao Si white noise, the filtering accuracy will be affected. Several Gao Si white noises are used as the subterms of Gao Si, and the weighted sum of them is used to approximate the non-Gao Si white noise, and at the same time to limit the total number of sub-Gao Si items at each time to ensure the efficiency of the solution at each time. The experimental data show that the algorithm can effectively suppress the influence of non-Gao Si white noise and improve the stability and filtering accuracy of the algorithm.
【學位授予單位】:國防科學技術(shù)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TN967.1;TN713
【參考文獻】
相關(guān)期刊論文 前10條
1 張凱;單甘霖;;基于高斯和與SCKF的非線性非高斯濾波算法[J];儀器儀表學報;2014年11期
2 李小民;杜占龍;鄭宗貴;張國榮;毛瓊;;基于STSCKF和改進型χ~2檢驗的模擬電路故障辨識[J];儀器儀表學報;2014年10期
3 王樹磊;魏瑞軒;關(guān)旭寧;;容積法則輔助的交互式多模型濾波算法[J];控制與決策;2014年09期
4 張鑫春;郭承軍;;均方根嵌入式容積卡爾曼濾波[J];控制理論與應(yīng)用;2013年09期
5 姜偉;呂澤均;藍瑤;;基于變維交互作用的IMM-CKF算法[J];計算機應(yīng)用與軟件;2013年05期
6 王碩;劉麗;;基于機動轉(zhuǎn)彎目標的自適應(yīng)交互式多模型算法[J];計算機仿真;2013年04期
7 孫楓;唐李軍;;Cubature卡爾曼濾波與Unscented卡爾曼濾波估計精度比較[J];控制與決策;2013年02期
8 孫楓;唐李軍;;Cubature卡爾曼濾波-卡爾曼濾波算法[J];控制與決策;2012年10期
9 李振華;寧磊;徐勝男;;基于均差濾波與高斯和的非線性非高斯系統(tǒng)濾波算法[J];控制與決策;2012年01期
10 孫楓;唐李軍;;Cubature粒子濾波[J];系統(tǒng)工程與電子技術(shù);2011年11期
相關(guān)博士學位論文 前3條
1 何可可;非線性非高斯條件下貝葉斯濾波若干問題研究[D];南京理工大學;2012年
2 曹軼之;非高斯/非線性濾波算法研究及其在GPS動態(tài)定位中的應(yīng)用[D];解放軍信息工程大學;2012年
3 唐李軍;Cubature卡爾曼濾波及其在導航中的應(yīng)用研究[D];哈爾濱工程大學;2012年
相關(guān)碩士學位論文 前3條
1 李家森;北斗/INS組合導航信息融合濾波算法研究[D];哈爾濱工程大學;2013年
2 陳勇;信息融合技術(shù)在組合導航系統(tǒng)中的應(yīng)用研究[D];南京理工大學;2007年
3 彭競;非線性濾波技術(shù)在衛(wèi)星導航系統(tǒng)中的應(yīng)用研究[D];國防科學技術(shù)大學;2005年
,本文編號:2297664
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2297664.html