應(yīng)變RF LDMOSFET的研究
[Abstract]:Strain technique is widely used in MOS devices because it modulates the energy band to reduce the effective mass and scattering rate of carriers and to enhance the mobility of carriers. It is compatible with CMOS process and is widely used in MOS devices. It is difficult to improve the carrier mobility of RF LDMOSFET in both channel region and drift region by conventional contact etching barrier layer (Contact Etch Stop Layer,CESL) technique. In addition, with the further reduction of the device size, both the traditional strain technique and the traditional PSOI technology can not only improve the performance of RF LDMOSFET devices but also effectively suppress the short channel effect. In order to solve the above problems, the following researches on strain RF LDMOSFET are carried out through theoretical and simulation analysis. Firstly, the mechanical and electrical characteristics of positive strain RF LDMOSFET in drift region are analyzed by Sentaurus simulation. In order to solve the problem of stress inversion in drift region and decrease of carrier mobility, the proposed positive strain RF device in drift region is deposited on the surface of drift region by a stress film with different properties from other regions. The isomorphic stress is introduced into the channel and drift region successfully, and the mobility of drift region and channel carrier is raised simultaneously, and the mobility of drift region increases to 24%. The thickness of silicon in the top layer of conventional PSOI RF LDMOSFET devices decreases and the drift region becomes narrow and narrow, and the drift resistance increases with the stress inversion in the drift region. The drift region stress of the positive strain RF device in drift region is the same as that of the channel, which reduces the mobility of carrier in drift region to a large extent. In addition, the surface layer of the drift region is depleted when the gate voltage is bias with high leakage pressure. The increase of the on-resistance and frequency characteristics is mainly determined by channel mobility, therefore, compared with the strain-free devices, the on resistance and frequency characteristics of the drift region are mainly determined by the channel mobility. The cutoff frequency of the ordinary CESL strain and the new CESL strain are similar to that of the new CESL strain (24% and 28% respectively), the electron accumulation on the surface of the drift region is observed at high gate voltage, and the carrier mobility in the drift region is decreased due to the ordinary CESL strain. Therefore, the cutoff frequencies of channel positive strain devices and conventional strain devices are 18.9% and 5.5% higher than those of conventional strain-free RF devices respectively at high gate voltages. Secondly, The mechanical and electrical characteristics of ultra-thin strain PSOI RF LDMOSFET are analyzed by Sentaurus simulation. The. Sentaurus Sdevice finite element simulation software shows that the driving ability of ultra-thin strain PSOI RF LDMOS device is higher than that of strain-free bulk silicon RF LDMOS up to 73, larger than that of ultra-thin. Simple superposition of SOI alone (37.2% increase) and strain technique alone (24.6% increase). The ultra-thin strain PSOILDMOSFET has the advantages of both the strain technique and the ultra-thin SOI technique. The local BOX structure below the channel can effectively suppress the short channel effect, reduce the DIBL from 47mV/V to 28 MV / V, and effectively increase the channel stress of the traditional CESL strain volume silicon device. Further increase channel carrier mobility.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN386
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王敏良;孔德海;;集成電路電磁騷擾測試方法[J];安全與電磁兼容;2007年01期
2 程東明;杜艷麗;馬鳳英;段智勇;郭茂田;趙傳奇;羅榮輝;弓巧俠;楊靜;;光纖耦合模塊中光纖焊接技術(shù)的研究[J];半導(dǎo)體光電;2007年04期
3 向鵬飛;袁安波;楊修偉;高建威;;CCD多晶硅刻蝕技術(shù)研究[J];半導(dǎo)體光電;2010年06期
4 敬小成,姚若河,吳緯國;二氧化硅干法蝕刻參數(shù)的優(yōu)化研究[J];半導(dǎo)體技術(shù);2005年06期
5 彭志輝,黃其煜;半導(dǎo)體代工廠的特氣供應(yīng)系統(tǒng)探討[J];半導(dǎo)體技術(shù);2005年08期
6 薛向東;吳黎明;鄧耀華;伍馮潔;何仲凱;;IC晶片關(guān)鍵尺寸標(biāo)定的新方法研究[J];半導(dǎo)體技術(shù);2005年12期
7 張正榮;詹揚;汪輝;;一種多晶硅掩膜層濕法去除的改進(jìn)研究[J];半導(dǎo)體技術(shù);2007年12期
8 楊一博;尹文生;王春洪;朱煜;張明超;;高溫氧化擴散爐溫控系統(tǒng)設(shè)計[J];半導(dǎo)體技術(shù);2009年01期
9 劉興輝;劉通;;1N4626型齊納二極管的低噪聲關(guān)鍵技術(shù)研究[J];半導(dǎo)體技術(shù);2009年05期
10 張進(jìn);劉玉嶺;申曉寧;張偉;蘇艷勤;;ULSI多層互連中W-CMP速率研究[J];半導(dǎo)體技術(shù);2009年08期
相關(guān)會議論文 前4條
1 江軒;;半導(dǎo)體行業(yè)用靶材及蒸發(fā)源材料[A];集成電路配套材料研討會及參展資料匯編[C];2004年
2 譚剛;吳嘉麗;;硅襯底的化學(xué)機械拋光工藝研究[A];第七屆青年學(xué)術(shù)會議論文集[C];2005年
3 袁媛;耿學(xué)文;李美成;;LPCVD制備微晶硅薄膜及熱處理工藝研究[A];2009年先進(jìn)光學(xué)技術(shù)及其應(yīng)用研討會論文集(上冊)[C];2009年
4 李東升;;特種氣體在電子行業(yè)中的應(yīng)用[A];2013年年會暨工業(yè)氣體供應(yīng)技術(shù)論壇論文集(上海)[C];2014年
相關(guān)博士學(xué)位論文 前10條
1 陳文昱;浸沒式光刻中浸液控制單元的液體供給及密封研究[D];浙江大學(xué);2010年
2 孫禹輝;硅片化學(xué)機械拋光中材料去除非均勻性研究[D];大連理工大學(xué);2011年
3 聞心怡;鐵電存儲器關(guān)鍵工藝與器件建模研究[D];華中科技大學(xué);2011年
4 劉秉策;ZnO/Si異質(zhì)結(jié)構(gòu)晶界行為及其載流子輸運機制研究[D];中國科學(xué)技術(shù)大學(xué);2011年
5 何子安;玻璃基質(zhì)光波導(dǎo)及其摻鉺波導(dǎo)光放大器的離子交換法制備[D];復(fù)旦大學(xué);2008年
6 張磊;有機電致發(fā)光顯示屏的制備及其漏電流研究[D];電子科技大學(xué);2010年
7 朱祥龍;300mm硅片超精密磨床設(shè)計與開發(fā)[D];大連理工大學(xué);2011年
8 徐馳;基于摩擦力在線測量的化學(xué)機械拋光終點檢測技術(shù)研究[D];大連理工大學(xué);2011年
9 陸向?qū)?基于主動紅外熱成像的倒裝焊缺陷檢測方法研究[D];華中科技大學(xué);2012年
10 孔祥東;電子束液態(tài)曝光技術(shù)的研究[D];山東大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 張秀芳;硅、鍺切割片的損傷層研究[D];浙江理工大學(xué);2010年
2 趙海軒;超精密磨削硅片變形規(guī)律的研究[D];大連理工大學(xué);2010年
3 于祝鵬;穿通結(jié)構(gòu)三極管BV_(CEO)仿真分析及一致性提高研究[D];電子科技大學(xué);2010年
4 趙金余;光刻機浸沒單元的流場檢測與結(jié)構(gòu)優(yōu)化[D];浙江大學(xué);2011年
5 巴靜;基于PVDF的光刻機流場壓力檢測方法的研究[D];浙江大學(xué);2011年
6 向莉;H橋功率驅(qū)動電路設(shè)計及其BCD工藝平臺開發(fā)[D];電子科技大學(xué);2011年
7 游佩武;汽車雪崩整流二極管研制[D];沈陽工業(yè)大學(xué);2011年
8 劉振;Small Tools結(jié)構(gòu)設(shè)計與分析[D];吉林大學(xué);2011年
9 曹英麗;超低表面反射率單晶硅片制備方法的研究[D];大連理工大學(xué);2011年
10 劉秉濤;基于BSIM4的SMIC 0.13um工藝RF MOSFET建模[D];杭州電子科技大學(xué);2011年
,本文編號:2280745
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2280745.html