超低比導(dǎo)通電阻槽型功率MOS新結(jié)構(gòu)與機(jī)理研究
[Abstract]:As the core of power electronic system, power MOS device is one of the research hotspots to realize low power consumption. Among them, the total power consumption of power MOS mainly includes static power consumption and dynamic power consumption, the static power consumption of the device is mainly measured by on-resistance, and the dynamic power consumption is measured by the gate leakage capacitance of the device. In order to reduce the on-resistance and gate leakage capacitance of power MOS, two new types of power MOS devices are proposed in this paper. The static characteristics (including forward on-on characteristics and voltage-resistant characteristics), dynamic characteristics and feasible process implementation schemes are studied. The simulation results show that the two new structures can greatly improve the performance of the device and reduce the power consumption of the device significantly while maintaining the voltage resistance of the device. An ultra-low specific on-resistance and ultra-low dynamic loss power FINFET device with separation gate is proposed. The structure is characterized by having a fin gate and a separation gate. The fin gate surrounds the P-well region from three dimensions. The separation gate electrically connected with the source potential is arranged on both sides of the drift region and separated from the drift region by a wedge oxide layer. First, the fin gate structure increases the channel width and modulates the current distribution, thus reducing the specific on-resistance of the device and increasing the transconductance of the device. Secondly, the gate leakage and the switching loss are greatly reduced by the separation gate structure. Thirdly, the separation gate structure is used as the depletion of the source field-assisted drift region, thus increasing the doping concentration in the drift region of the device, and further reducing the specific on-resistance of the device. Fourth, the separation gate structure acts as the source field plate, modulates the high electric field at the source and drain ends, and makes the electric field distribution in the drift region more uniform, thus ensuring the voltage resistance of the device. The simulation results show that the on-resistance of the new structure is reduced by 60% and 47%, respectively, compared with the conventional structure and the conventional overjunction device. At the same time, the gate leakage charge of the new structure is 55. 2% lower than that of the structure without separate gate. An ultra-low specific on-resistance VDMOS device with charge accumulation layer is proposed. The structure is characterized by an extended gate structure with an extended gate extending to the leakage end and two PN junctions in the extended gate. On the one hand, an electron accumulation layer is formed on both sides of the extended gate in the positive guide state, thus introducing two low-resistance current paths from the source to the drain. The resulting current path not only greatly reduces the on-resistance of the device, but also weakens the dependence of the on-resistance of the device on the doping concentration in the drift region. On the other hand, in the voltage-resistant state, the N strip inside the extended gate will exhaust the N strip in the drift region, thus increasing the doping concentration in the drift region of the device and further reducing the on-resistance of the device. In particular, the two PN junctions within the extended gate play a very important role. In the positive-guide state, one of the PN junctions inversely deflects the voltage between the gate leaks, thus reducing the gate leakage current, while in the voltage-tolerant state, the other PN junction withstands a high voltage between the drain and the gate, which ensures the device has a high breakdown voltage. Because the extended gate of the device extends to the leakage end of the device, the new structure has a large gate leakage capacitance, which leads to the degradation of the switching characteristics, so the new structure is suitable for use in if and low frequency applications. The simulation results show that compared with the conventional overjunction devices, the new structure decreases the on-resistance by 80% when the voltage is maintained at 800V level.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN386.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 丁翔;;接地導(dǎo)通電阻校準(zhǔn)方法的研究[J];電子產(chǎn)品可靠性與環(huán)境試驗(yàn);2006年03期
2 趙佶;;羅姆發(fā)布第二代SiC制MOSFET,可抑制通電劣化現(xiàn)象[J];半導(dǎo)體信息;2012年04期
3 張明興;;導(dǎo)通電阻為零的模擬開關(guān)[J];電子技術(shù);1986年12期
4 孫雋;;導(dǎo)通電阻極大減小的新型垂直功率MOSFET結(jié)構(gòu)[J];電子工藝技術(shù);1986年04期
5 Daisuke Ueda ,李巍;一種能降低導(dǎo)通電阻的新型縱向功率MOSFET結(jié)構(gòu)[J];微電子學(xué);1987年02期
6 ;新品之窗[J];電子元器件應(yīng)用;2002年06期
7 陳力;馮全源;;低壓溝槽功率MOSFET導(dǎo)通電阻的最優(yōu)化設(shè)計(jì)[J];微電子學(xué);2012年05期
8 ;Vishay發(fā)布采用ThunderFET~汶技術(shù)的通過(guò)AEC-Q101認(rèn)證的最新MOSFET[J];電子設(shè)計(jì)工程;2014年06期
9 張?chǎng)?閻冬梅;VDMOSFET的最佳化設(shè)計(jì)研究(500V)[J];遼寧大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年01期
10 王穎;程超;胡海帆;;溝槽柵功率MOSFET導(dǎo)通電阻的模擬研究[J];北京工業(yè)大學(xué)學(xué)報(bào);2011年03期
相關(guān)會(huì)議論文 前5條
1 諶怡;劉毅;王衛(wèi);夏連勝;張?bào)?朱雋;石金水;章林文;;GaAs光導(dǎo)開關(guān)的導(dǎo)通電阻[A];第九屆中國(guó)核學(xué)會(huì)“核科技、核應(yīng)用、核經(jīng)濟(jì)(三核)”論壇論文集[C];2012年
2 孟堅(jiān);高珊;陳軍寧;柯導(dǎo)明;孫偉鋒;時(shí)龍興;徐超;;用阱作高阻漂移區(qū)的LDMOS導(dǎo)通電阻的解析模型[A];2005年“數(shù)字安徽”博士科技論壇論文集[C];2005年
3 武潔;方健;李肇基;;單晶擴(kuò)散型LDMOS特性分析[A];展望新世紀(jì)——’02學(xué)術(shù)年會(huì)論文集[C];2002年
4 武潔;方健;李肇基;;單晶擴(kuò)散型LDMOS特性分析[A];中國(guó)電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第八屆學(xué)術(shù)年會(huì)論文集[C];2002年
5 ;降低雙層金屬布線導(dǎo)通電阻不合格率 中國(guó)電子科技集團(tuán)公司第二十四研究所單片工藝室PVD工序心一QC小組[A];2007年度電子信息行業(yè)優(yōu)秀質(zhì)量管理小組成果質(zhì)量信得過(guò)班組經(jīng)驗(yàn)專集[C];2007年
相關(guān)重要報(bào)紙文章 前2條
1 四川 鐘榮;再議光耦合器的檢測(cè)方法[N];電子報(bào);2005年
2 山東 毛興武;由STA500組成的60W D類放大器[N];電子報(bào);2002年
相關(guān)博士學(xué)位論文 前4條
1 章文通;超結(jié)功率器件等效襯底模型與非全耗盡工作模式研究[D];電子科技大學(xué);2016年
2 于秀麗;人工作業(yè)系統(tǒng)(MOS)建模與員工組織優(yōu)化[D];廣東工業(yè)大學(xué);2013年
3 周坤;高壓低功耗MOS柵控功率器件新結(jié)構(gòu)與模型研究[D];電子科技大學(xué);2017年
4 黃海猛;超結(jié)器件的模型研究及優(yōu)化設(shè)計(jì)[D];電子科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 馬達(dá);超低比導(dǎo)通電阻槽型功率MOS新結(jié)構(gòu)與機(jī)理研究[D];電子科技大學(xué);2017年
2 吳克滂;功率MOSFET的終端耐壓特性研究[D];西南交通大學(xué);2015年
3 汪德波;60V 功率U-MOSFET失效分析與再設(shè)計(jì)[D];西南交通大學(xué);2015年
4 吳文杰;一種基于曲率結(jié)擴(kuò)展原理的襯底終端結(jié)構(gòu)的研究[D];電子科技大學(xué);2014年
5 徐青;槽型高壓低功耗橫向MOSFET研究[D];電子科技大學(xué);2015年
6 翟華星;基于離子注入工藝的新型SiC IGBT的設(shè)計(jì)與仿真[D];西安電子科技大學(xué);2014年
7 廖濤;電磁爐用NPT型IGBT的研究[D];東南大學(xué);2015年
8 于冰;基于0.25μm工藝的低壓Power MOS設(shè)計(jì)與研究[D];東南大學(xué);2015年
9 周倩;一種低導(dǎo)通電阻60V Trench MOSFET的設(shè)計(jì)與制造[D];上海交通大學(xué);2015年
10 楊萌;低導(dǎo)通電阻碳化硅光導(dǎo)開關(guān)研究[D];西安電子科技大學(xué);2015年
,本文編號(hào):2277504
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2277504.html