基于光梳的奈奎斯特脈沖信號(hào)生成技術(shù)研究
[Abstract]:Microwave photonics is a new interdisciplinary subject which combines microwave technology and optical technology. It has been developing rapidly in recent decades. Its application involves all aspects of microwave and optics fields. Nyquist pulse is one of the key technologies in microwave photonics signal generation. With the arrival of the "Internet" era, the optical transmission network, which is the basis of the Internet and communication network, is facing more and more pressure. People usually use the method of increasing channel bandwidth, but the frequency resources are limited, so people begin to study how to improve the efficiency of spectrum utilization. In theory, Nyquist signal has the smallest signal bandwidth, but limited by the bandwidth of electronic device and sampling rate, it is difficult to produce high speed signal in electric domain, while all optical Nyquist signal can produce high speed signal. It can also improve the spectral efficiency, and has a great application prospect. In addition, the pulse also has important applications in all optical signal processing, spectroscopy, optical storage and so on, so it has attracted wide attention of scholars at home and abroad. There are many methods to generate the pulse signal of Nyquist, some of which focus on the simplicity and flexibility of the design structure, some on the parameters and quality of the generated pulse. In this paper, the direct generation method of Sinc type light Nyquist based on Fourier transform is studied. At first, the electro-optic modulator is used to generate a uniform optical frequency comb with narrow linewidth, equal amplitude and linear change of phase. After time-frequency conversion, a sequence of Sinc type optical Nyquist pulses is generated directly in time domain, which is abbreviated as a Sinc pulse. In this paper, we first study the scheme of using single intensity modulator (IM), single double parallel Mach Zehnder modulator (DPMZM), two cascaded IM, cascades and two cascaded DPMZM, and generate three lines, five lines, nine lines, 25 lines with different frequency intervals respectively. After time-frequency conversion, Sinc type optical pulses are generated. The condition of parameter setting of cascade modulator is analyzed. On this basis, a scheme of generating Sin pulse using DPMZM and IM is proposed. The frequency domain of the scheme is 15-line comb which meets the above conditions. The repetition rate and zero-crossing pulse width of the generated Sinc pulse can be changed by changing the input RF frequency. The formulas of these schemes are deduced and verified by VPI software simulation. Finally, the Sinc pulse corresponding to different combs is compared with Matlab software at normalized frequency. In this paper, the Sagnac ring effect is also studied. By using this effect, the scheme of adding IM, to Sagnac ring to form S-IM is proposed, and the Sinc type Nyquist pulse scheme with 5 lines combs is generated. Then the concatenated IM and S-IMO S-IM and S-IM structures are designed by using cascade modulation principle and S-IM loop to generate Sinc pulses of 15 lines and 25 lines respectively. The simulation is also carried out by using VPI and Matlab software. This scheme breaks through the pulse of IM which can only generate 3 lines of light comb, and is more flexible, simple in structure and easy to control. In addition, because the Sagnac loop is used, the light propagating in both positive and negative directions propagates in the same fiber loop, so the influence of environment on the stability of the system is limited, which has certain research value and practical value.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN78
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郝建民;再論奈奎斯特傳輸率可以突破──兼答王益民文[4]對(duì)拙文[1]中這一結(jié)論的否定[J];遙測(cè)遙控;1995年06期
2 于德泳,楊忠民;等效于奈奎斯特第二準(zhǔn)則的傳輸函數(shù)及構(gòu)造(英文)[J];遼寧大學(xué)學(xué)報(bào)(自然科學(xué)版);2000年04期
3 林偉毅;;次奈奎斯特采樣在超聲波成像中的應(yīng)用[J];電子設(shè)計(jì)工程;2013年11期
4 金傳升;;十八個(gè)月做出微型奈奎斯特話音處理樣機(jī)[J];通信技術(shù);1979年01期
5 許昕,許家時(shí),蔡紹洪;奈奎斯特濾波器設(shè)計(jì)[J];貴州大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年03期
6 王兆華;亞奈奎斯特取樣的PAL電視信號(hào)的二維重構(gòu)[J];通信學(xué)報(bào);1987年01期
7 蓋建新;付平;喬家慶;孟升衛(wèi);;用于寬帶頻譜感知的全盲亞奈奎斯特采樣方法[J];電子與信息學(xué)報(bào);2012年02期
8 ;Maxim推出12位、多奈奎斯特頻段DAC[J];電子技術(shù);2006年10期
9 舒根春;王紅星;;基于奈奎斯特采樣的橢圓球面波脈沖信號(hào)設(shè)計(jì)[J];中國(guó)電子科學(xué)研究院學(xué)報(bào);2010年06期
10 何輔云;PAL信號(hào)的亞奈奎斯特壓縮編碼的混疊消除[J];數(shù)據(jù)采集與處理;2000年02期
相關(guān)博士學(xué)位論文 前2條
1 蓋建新;基于MWC的稀疏寬帶信號(hào)亞奈奎斯特采樣技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2013年
2 黃深喜;高速奈奎斯特模數(shù)轉(zhuǎn)換器頻域特性測(cè)試方法研究[D];中南大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 堵瑩;管道缺陷超聲檢測(cè)信號(hào)的次奈奎斯特采樣與重構(gòu)[D];江蘇大學(xué);2016年
2 田舒婷;基于光梳的奈奎斯特脈沖信號(hào)生成技術(shù)研究[D];西安電子科技大學(xué);2015年
,本文編號(hào):2275024
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2275024.html