天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

高功率電子器件產(chǎn)熱傳熱特性的理論研究

發(fā)布時間:2018-10-15 10:34
【摘要】:晶體管是大規(guī)模集成電路的核心器件,在雷達、通信衛(wèi)星中繼器及各種無線裝置中廣泛使用,近年來其發(fā)展趨勢呈現(xiàn)出特征尺寸逐步減小與功率大幅提高的特點,導(dǎo)致其局部熱流密度極具上升(達到200W/cm2以上).如果未采取有效的冷卻措施,將導(dǎo)致器件內(nèi)部溫度迅速增高,溫度梯度增大,甚至達到或超過其正常工作溫度,高溫下降加速電極的劣化,大大降低電子元器件的使用壽命。因此,器件熱管理技術(shù)對于保障晶體管等高功率電子器件的正常工作至關(guān)重要。研究電子器件的產(chǎn)熱與傳熱特性,掌握其不同工作狀態(tài)的溫度分布特征,是建立高功率電子器件熱管理技術(shù)的前提。本文的主要工作包括:1高熱流密度微/納尺度電子器件熱電模型建立隨著半導(dǎo)體器件特征尺寸的減小以及功率的增加,器件內(nèi)部熱流密度急劇增加,此時器件的特征尺寸與器件內(nèi)部熱載子的平均自由程相當(dāng),運用傳統(tǒng)的方法研究時,將產(chǎn)生較大的誤差,此時應(yīng)該從器件的產(chǎn)熱機理出發(fā),從微觀或介觀尺度描述電子、聲子的遷移過程和電子、聲子間的散射作用,研究器件內(nèi)部的產(chǎn)熱與傳熱過程。本文首先運用格子-Boltzmann方法,建立了微/納尺度的場效應(yīng)晶體管的產(chǎn)熱與傳熱模型,該模型中考慮了電子與聲子的耦合過程,在聲子方程中加入了由外加電場產(chǎn)生源項,分析不同工作狀況下器件內(nèi)部的溫度分布,此外改變熱管理方式時,例如增加上、下邊界對流換熱系數(shù),計算不同熱管理方式時,器件內(nèi)部的溫度分布,為熱設(shè)計提供一定的理論依據(jù)。其次,本文建立了非能量平衡微/納尺晶體管產(chǎn)熱傳熱模型。在運用格子-Boltzmann建立的傳熱模型中,忽略了聲子的分類。聲子根據(jù)頻率的不同分為光學(xué)聲子和聲學(xué)聲子,光學(xué)聲子的群速度較小趨近于0,聲學(xué)聲子的群速度較大,因此聲學(xué)聲子是器件中傳熱的主要載子,因此為了提高計算的準(zhǔn)確度,運用非能量平衡方法,考慮晶體管中電子、光學(xué)聲子、聲學(xué)聲子的相互作用,計算晶體管內(nèi)部的熱電特性,包括電場強度、電勢、溫度以及焦耳熱分布等。2雙指器件熱電特性的模擬對于電子器件而言,其結(jié)構(gòu)呈現(xiàn)出周期性的特征。在之前的文獻中大多是以單指器件為一個結(jié)構(gòu)單元,而在實際的結(jié)構(gòu)中,其最小結(jié)構(gòu)單元多是雙指器件。二者最大的差別在于源極、柵極以及漏極的位置分布不同。而在器件中,電極分布的位置對電場強度分布有著至關(guān)重要的影響,而電場強度的分布又決定了器件內(nèi)部的溫度分布以及焦耳熱分布。因此以雙指器件為最小結(jié)構(gòu)單元更符合實際情況,計算更準(zhǔn)確3器件溫度影響因素分析在微/納尺度半導(dǎo)體器件中,其產(chǎn)熱機理可以簡單描述為:在外加的高電場作用下,電子獲得了極高的能量,隨后高能電子將能量傳遞給聲子,在通過聲子的運動將能量傳播開來。在實際的過程中,其溫度分布受到了多種因素的影響。以雙指器件為例,首先,外加電壓的不同,會引起器件內(nèi)部溫度分布的差異。其次,摻雜濃度對于半導(dǎo)體器件而言,也是一個重要的影響因素,最高溫度隨著摻雜濃度的增加而升高。第三,熱管理方式的不同,對內(nèi)部溫度分布以及焦耳熱分布產(chǎn)生的影響有所不同。因此,本文研究了上、下對流換熱系數(shù)、襯底溫度、漏極電壓以及摻雜濃度對器件的熱電特性的影響,分析不同參數(shù)對器件的影響,找到維持器件正常工作條件下的參數(shù),對熱設(shè)計工作者提供一定理論依據(jù)。
[Abstract]:The transistor is a core device of large-scale integrated circuit and is widely used in radar, communication satellite relay and various wireless devices, resulting in a very high local heat flow density (up to 200W/ cm2). if the effective cooling measures are not adopted, the internal temperature of the device is rapidly increased, the temperature gradient is increased, even the normal working temperature is reached or exceeded, the degradation of the accelerated electrode at the high temperature is reduced, and the service life of the electronic component is greatly reduced. As a result, device thermal management techniques are critical to normal operation of high power electronics, such as transistors. The thermal and heat transfer characteristics of electronic devices are studied, and the temperature distribution characteristics of different working states are mastered, which is the premise of establishing the thermal management technology of high-power electronic devices. the main work of this paper includes: 1 high heat flux density micro/ nano-scale electronic device thermoelectric model builds up with the reduction of the feature size of the semiconductor device and the increase of power, the heat flow density of the device increases sharply, At this time, the feature size of the device is equivalent to the average free path of the thermal carrier in the device, and when the traditional method is applied, a larger error will be generated. At this time, the migration process and the electrons of the electrons and the acoustic sub-carriers should be described from the micro or meso scale according to the thermal mechanism of the device. The heat and heat transfer process inside the device is studied by the scattering effect between the acoustic photons. In this paper, the thermal and heat transfer model of a field effect transistor with micro/ nano scale is established by using the lattice Boltzmann method. In this model, the coupling process of the electron and the phonon is taken into account, and the source term generated by the applied electric field is added into the acoustic sub-equation. The temperature distribution inside the device under different working conditions is analyzed. In addition, when the thermal management mode is changed, for example, the convection heat transfer coefficient of upper and lower boundary is increased, the temperature distribution inside the device is calculated when different thermal management modes are calculated, and a certain theoretical basis is provided for the thermal design. Secondly, the heat transfer model of non-energy balance micro/ nano-scale transistor is established in this paper. In the heat transfer model established by lattice-Boltzmann, the classification of acoustic sub-particles is neglected. The acoustic phonon is divided into optical phonon and acoustic phonon according to the frequency, the group velocity of the optical phonon is small approaching to 0, the group velocity of the acoustic phonon is larger, so the acoustic phonon is the main carrier of heat transfer in the device, therefore, in order to improve the accuracy of calculation, the non-energy balance method is applied, considering the interaction of the electrons, the optical phonon, the acoustic phonon in the transistor, the thermoelectric characteristics inside the transistor are calculated, including the electric field strength, the electric potential, the temperature, and the jjjj thermal distribution, etc. The simulation of the thermoelectric characteristics of the two-finger device is for the electronic device, the structure of which exhibits periodic characteristics. Most of the previous literatures are single-finger devices as one structural unit, while in the actual structure, the smallest structural unit is a double-finger device. The difference between the source, the grid and the drain is different. In the device, the position of the electrode distribution plays an important role in the intensity distribution of the electric field, and the distribution of the electric field intensity also determines the temperature distribution inside the device and the Joule heat distribution. in that micro/ nano-scale semiconductor device, the heat mechanism of the micro/ nano-scale semiconductor device can be simply described as follows: under the action of the applied high electric field, the electrons obtain extremely high energy, The energetic electrons then pass energy to the phonon and propagate energy through the motion of the phonon. In the actual process, the temperature distribution is influenced by many factors. In the case of double-finger device, the difference of temperature distribution inside the device is caused by the difference of applied voltage. Second, the doping concentration is also an important influencing factor for the semiconductor device, and the highest temperature increases as the doping concentration increases. Third, the heat management mode is different, and the influence on internal temperature distribution and Joule heat distribution is different. Therefore, the influence of different parameters on the thermoelectric properties of the device under the influence of different parameters on the thermoelectric properties of the device is studied, and the parameters under normal operating conditions of the device are found. and provides a theoretical basis for the thermal design workers.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN32

【參考文獻】

相關(guān)期刊論文 前1條

1 翁壽松;摩爾定律與半導(dǎo)體設(shè)備[J];電子工業(yè)專用設(shè)備;2002年04期

,

本文編號:2272272

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2272272.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ea7cd***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com