天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 電子信息論文 >

基于支持向量機(jī)的濾波器設(shè)計(jì)及硬件實(shí)現(xiàn)

發(fā)布時(shí)間:2018-10-10 11:49
【摘要】:濾波器是電子設(shè)備中的常見(jiàn)模塊,經(jīng)典的濾波器設(shè)計(jì)方法有窗函數(shù)法,頻率抽取法等。自機(jī)器學(xué)習(xí)的理論出現(xiàn)后,神經(jīng)網(wǎng)絡(luò)等算法廣泛應(yīng)用到FIR濾波器的設(shè)計(jì)中。本文針對(duì)傳統(tǒng)FIR濾波器設(shè)計(jì)方法及神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)方法的不足,在改進(jìn)使用支持向量機(jī)(SVM)設(shè)計(jì)FIR濾波器方法的基礎(chǔ)上,提出了 SVM設(shè)計(jì)FIR濾波器的硬件實(shí)現(xiàn)方法,將由SVM設(shè)計(jì)的濾波器移植到硬件上。使用SVM構(gòu)造FIR濾波器,得到的濾波器可更新,并且使用的訓(xùn)練樣本較少,本文中使用理想濾波器的幅值響應(yīng)訓(xùn)練SVM。在建立SVM模型的過(guò)程中,本文引入針對(duì)訓(xùn)練集輸出值的放大參數(shù),該參數(shù)將數(shù)據(jù)集分離,并影響最終的幅頻響應(yīng)。SVM模型中訓(xùn)練參數(shù)較多,如訓(xùn)練組數(shù)、懲罰參數(shù)、核函數(shù)參數(shù)等,本文進(jìn)行多次測(cè)試,將結(jié)果進(jìn)行比較得到最優(yōu)訓(xùn)練參數(shù),據(jù)此構(gòu)建基于SVM的FIR濾波器模型。相對(duì)于窗函數(shù),使用S VM設(shè)計(jì)的濾波器具有良好的幅頻特性,邊界控制較為精確,通帶較為平緩,阻帶波動(dòng)次數(shù)較少,衰減較多。為了保證濾波器的可更改性和便于其移植到其他系統(tǒng)里,利用生成的FIR濾波器模型構(gòu)建一個(gè)位于FPGA上的嵌入式系統(tǒng)。FIR濾波器嵌入式系統(tǒng)主要由SVM構(gòu)成,對(duì)SVM算法中頻繁出現(xiàn)的核函數(shù)計(jì)算以及浮點(diǎn)數(shù)乘法加法運(yùn)算進(jìn)行硬件實(shí)現(xiàn),對(duì)SVM算法中的訓(xùn)練部分和分類部分進(jìn)行軟件框架實(shí)現(xiàn)。本文對(duì)核函數(shù)的硬件實(shí)現(xiàn)進(jìn)行優(yōu)化,針對(duì)RBF核函數(shù),進(jìn)行算法上的改進(jìn),加速運(yùn)算,同時(shí)使用流水線、向量分割等方法加速硬件系統(tǒng),并平衡速度與資源。最終系統(tǒng)中單次分類測(cè)試向量的時(shí)間約為20us,濾波準(zhǔn)確率可達(dá)到98.41%。
[Abstract]:Filter is a common module in electronic equipment. The classical filter design methods include window function method, frequency decimation method and so on. Since the emergence of the theory of machine learning, neural networks and other algorithms are widely used in the design of FIR filters. Aiming at the shortcomings of the traditional FIR filter design method and the neural network design method, this paper proposes a hardware implementation method of SVM design FIR filter based on improving the FIR filter design method using support vector machine (SVM). The filter designed by SVM is transplanted to hardware. Using SVM to construct FIR filter, the filter can be updated and less training samples are used. In this paper, the amplitude response of ideal filter is used to train SVM.. In the process of establishing the SVM model, this paper introduces the amplification parameter for the output value of the training set, which separates the data set and affects the final amplitude-frequency response. There are many training parameters in the SVM model, such as the number of training groups and the penalty parameter. The kernel function parameters are tested several times in this paper, and the optimal training parameters are obtained by comparing the results, and then the FIR filter model based on SVM is constructed. Compared with the window function, the filter designed by S VM has good amplitude-frequency characteristic, the boundary control is more accurate, the passband is more gentle, the frequency of stopband fluctuation is less, and the attenuation is more. In order to ensure the modifiability of the filter and to transplant it to other systems, an embedded system. Fir filter embedded system based on FPGA is constructed by using the generated FIR filter model. The embedded system is mainly composed of SVM. The kernel function calculation and floating-point multiplication addition in SVM algorithm are implemented by hardware, and the training part and classification part of SVM algorithm are implemented by software framework. In this paper, the hardware implementation of kernel function is optimized. For RBF kernel function, the algorithm is improved and the operation is accelerated. At the same time, pipeline and vector partition are used to accelerate the hardware system, and the speed and resources are balanced. In the final system, the time of single classification test vector is about 20us, and the filtering accuracy can reach 98.41%.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN713

【參考文獻(xiàn)】

相關(guān)期刊論文 前4條

1 吉立新;魏開容;劉冰洋;聶智良;;基于組合-移位的指數(shù)運(yùn)算FPGA實(shí)現(xiàn)方法[J];信息工程大學(xué)學(xué)報(bào);2011年05期

2 孫豐闊;席斌;;基于支持向量回歸(SVR)的線性相位FIR濾波器設(shè)計(jì)[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年S1期

3 陳楊生;顏鋼鋒;;硬件實(shí)現(xiàn)基于BP神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)的帶阻FIR濾波器[J];浙江大學(xué)學(xué)報(bào)(工學(xué)版);2006年07期

4 周衛(wèi)東,李英遠(yuǎn);基于神經(jīng)網(wǎng)絡(luò)的FIR濾波器設(shè)計(jì)與應(yīng)用[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2003年01期

,

本文編號(hào):2261651

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2261651.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶650bb***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
亚洲欧洲精品一区二区三区| 五月婷日韩中文字幕四虎| 欧美激情区一区二区三区| 国产免费自拍黄片免费看| 激情国产白嫩美女在线观看| 欧美日本道一区二区三区| 欧美多人疯狂性战派对| 91精品欧美综合在ⅹ| 国产女同精品一区二区| 99久久人妻中文字幕| 东京热加勒比一区二区| 欧美日不卡无在线一区| 丝袜美女诱惑在线观看| 色偷偷亚洲女人天堂观看| 久久99爱爱视频视频| 国产精品一区二区视频| 99久久精品午夜一区| 亚洲淫片一区二区三区| 东北女人的逼操的舒服吗| 亚洲国产色婷婷久久精品| 久久热这里只有精品视频| 国产又色又爽又黄的精品视频| 我的性感妹妹在线观看| 办公室丝袜高跟秘书国产| 91亚洲国产成人久久| 成人精品一区二区三区综合| 亚洲精品中文字幕在线视频| 欧美一级内射一色桃子| 一区二区日韩欧美精品| 风韵人妻丰满熟妇老熟女av| 日韩中文字幕在线不卡一区| 日本特黄特色大片免费观看| 九九九热视频最新在线| 日本人妻中出在线观看| 91精品国自产拍老熟女露脸| 国产午夜免费在线视频| 91国自产精品中文字幕亚洲| 成年女人下边潮喷毛片免费| 欧美人与动牲交a精品| 成人精品网一区二区三区| 欧美日韩一区二区综合|