W波段準光腔技術(shù)研究
[Abstract]:With the rapid development of modern microwave electronic system, the development and testing technology of high performance microwave materials which can work in W band are urgently required. The development and test of W band low loss microwave dielectric material is the basis of the development of W band microwave technology. For W-band low-loss microwave dielectric materials, it is very important to accurately measure their relative dielectric constant and loss angle tangent. Due to the advantages of strong heterodyne suppression and convenient operation, it is very suitable to measure the relative dielectric constant and loss angle tangent of low loss microwave dielectric material in millimeter wave band. In order to reduce or even eliminate the influence of high order mode and improve the measurement accuracy, this paper studies the complex dielectric constant measurement system of the W-band quasi-optical cavity method from the following aspects, and selects the fixed cavity length method with higher accuracy. By comparing the advantages and disadvantages of flat cavity and double concave cavity, the structure of flat concave cavity with easier loading sample and simpler structure is selected. According to the beam wave theory, the internal field structure of optical cavity is analyzed, and the numerical calculation is made by MATLAB. The electric field and magnetic field distribution of the fundamental mode and the higher-order mode Gao Si beam in the cavity are obtained, and the basic parameters and coupling coefficient of the quasi-optical cavity are given. Based on the basic parameters and coupling coefficient of the quasi-optical cavity? According to the requirement, the appropriate cavity length D is calculated by exhaustive method, the modeling and simulation are carried out by using HFSS electromagnetic simulation software, the performance of passing and reflecting quasi-optical resonators is compared and analyzed, and the single-port reflection quasi-optical cavity is chosen. By comparing the resonant frequency of the main mode and the high order mode obtained by simulation with the theoretical calculation results, it is found that the fundamental mode frequency deviation is less than 1 MHz, which meets the test requirements. The structure of the whole system is designed by using Solidworks 3D mechanical structure design software. Drawing and machining, especially the tolerance of key dimensions and the tolerance of shape and position of the model are designed in detail. Finally, the spherical mirror, plane mirror and connecting plate that meet the requirements are designed and processed. Two W-Band quasi-optical cavity complex dielectric constant measurement systems with different cavity length D are set up. The working frequency is set between 86GHz and 102GHz. The complex permittivity of the same quartz glass substrate was measured, and the results were compared with the theoretical results.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN015
【參考文獻】
相關(guān)期刊論文 前10條
1 舒國響;張其劭;羅勇;蘇景;王麗;;球面近似高斯波束等相位面對開放式諧振腔性能的影響[J];真空科學(xué)與技術(shù)學(xué)報;2015年08期
2 張康;武彤;滕俊恒;;開口同軸探頭橫電磁波模型法測量液體復(fù)介電常數(shù)[J];電子測量與儀器學(xué)報;2015年07期
3 夏琴;鐘朝位;羅建;;K_2O-B_2O_3-SiO_2/Al_2O_3低溫共燒陶瓷介質(zhì)材料研究[J];壓電與聲光;2014年06期
4 王依超;郭高鳳;王娟;李恩;鄭虎;;自由空間法測量電磁材料電磁參數(shù)[J];宇航材料工藝;2014年01期
5 陳振;劉勇;鄒澎;;基于自由空間法的液體等效電參數(shù)測試系統(tǒng)的研究[J];電子設(shè)計工程;2012年09期
6 高源慈;余國芬;李恩;郭高鳳;Charles R.Jones;;D波段雙球鏡準光系統(tǒng)測量低耗介質(zhì)[J];強激光與粒子束;2012年02期
7 郭高鳳,李恩,張其劭,唐宗熙,羊愷;3mm準光腔內(nèi)場和能量分布的模擬計算[J];電子學(xué)報;2001年07期
8 廖復(fù)疆;大功率微波電子注器件及其發(fā)展[J];真空電子技術(shù);1999年01期
9 夏軍,,梁昌洪;毫米波準光腔雙層介質(zhì)電介質(zhì)參數(shù)測量新技術(shù)[J];紅外與毫米波學(xué)報;1994年04期
10 曹江;介質(zhì)材料電磁參數(shù)測量綜述[J];宇航計測技術(shù);1994年03期
相關(guān)博士學(xué)位論文 前1條
1 高源慈;電介質(zhì)準光學(xué)測試系統(tǒng)的實現(xiàn)及生物電磁學(xué)中的相關(guān)研究[D];電子科技大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 劉瑩;W波段準光腔法復(fù)介電常數(shù)測試系統(tǒng)的研究[D];電子科技大學(xué);2016年
2 范斌;基于短路微帶線法的復(fù)磁導(dǎo)率測量設(shè)備研究[D];蘭州大學(xué);2015年
3 金雨馨;鉍基焦綠石介質(zhì)材料的制備與介電性能研究[D];天津大學(xué);2014年
4 鞏宏博;介電常數(shù)測量的微帶短路線法及實現(xiàn)技術(shù)[D];上海交通大學(xué);2013年
5 蘭嬌;寬帶微波電介質(zhì)材料特征參數(shù)自動化測試技術(shù)的改進[D];電子科技大學(xué);2013年
6 廖昆明;微波介質(zhì)材料電磁特性參數(shù)測量的研究[D];南昌大學(xué);2012年
7 田湃;TE_(01n)模式高Q一腔多模測試腔中模式干擾和凈化研究[D];電子科技大學(xué);2012年
8 雷丹;用準光腔法測大面積介質(zhì)片復(fù)介電常數(shù)及其分布[D];電子科技大學(xué);2006年
9 馮萍麗;微波開式腔高溫(變溫)介質(zhì)參數(shù)自動測量系統(tǒng)[D];西北工業(yè)大學(xué);2006年
10 李恩;吸波材料電磁參數(shù)在X波段的變溫測試[D];電子科技大學(xué);2003年
本文編號:2247816
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2247816.html