改進型離子掩膜技術制作的玻璃基光波導研究
發(fā)布時間:2018-08-26 15:54
【摘要】:隨著社會的發(fā)展,人們對信息傳輸和處理的速度提出了越來越高的要求。傳統(tǒng)的電互連因為其固有的物理瓶頸,已經(jīng)不能繼續(xù)適應高速信息社會的發(fā)展。光互連以其抗電磁干擾、大帶寬、高互連密度等優(yōu)勢,成為解決電互連問題的最佳途徑。光波導自身可以實現(xiàn)小半徑彎曲,且容易實現(xiàn)波分復用技術,所以波導互連已經(jīng)成為板級光互連中的一個主要連接方式。玻璃基光波導具有損耗小、環(huán)境穩(wěn)定性好、易于集成、成本低等優(yōu)勢,因此非常適合板級光互連中光傳輸層的制作。由于電場輔助離子交換過程存在熱均勻性問題,不適用于大尺寸基片中光波導的制作,所以目前一般都是采用Ag+-Na+熱離子交換的方法。但是這種方法制作的表面光波導因為其折射率分布、表面散射和“銀線”等原因,損耗較大,失去了在板級光互連制作中的優(yōu)勢。針對以上問題,本文采用改進型K+離子掩膜技術在玻璃基片上制作了低損耗掩埋型光波導,實驗過程共分為三步:(一)通過K+-Na+離子交換在玻璃基片表面制作K+離子掩膜層;(二)通過Ag+-Na+離子交換制作光波導結(jié)構;(三)通過Na+-Ag+離子反交換制作掩埋型光波導。經(jīng)過實驗優(yōu)化,制得的光波導傳輸損耗為0.23dB/cm,耦合損耗為0.23dB。與傳統(tǒng)Ag+-Na+離子交換相比,光波導損耗有大幅度地降低。與電場輔助離子交換相比,插入損耗相近,但制作過程和設備大大簡化,也避免了離子交換過程中出現(xiàn)的掩埋深度不均勻的現(xiàn)象,因此本文提出的改進型K+離子掩膜技術適用于板級光互連中光互連層的制作。本文從離子交換的物理機制出發(fā),結(jié)合實驗相關參數(shù),針對改進型K+離子掩膜技術建立了離子交換理論模型,最后通過實驗驗證了理論模型的正確性,為今后的光波導制作提供了一種工具。
[Abstract]:With the development of society, the speed of information transmission and processing has become more and more demanding. Traditional electrical interconnection can not continue to adapt to the development of high-speed information society because of its inherent physical bottleneck. Optical interconnection has become the best way to solve the problem of electrical interconnection because of its advantages of anti-electromagnetic interference, large bandwidth and high interconnection density. The optical waveguide itself can realize small radius bending, and it is easy to realize wavelength division multiplexing technology, so the waveguide interconnection has become a main connection mode in the board-level optical interconnection. Glass-based optical waveguide has the advantages of low loss, good environmental stability, easy integration and low cost, so it is very suitable for the fabrication of optical transmission layer in the board-level optical interconnection. Due to the thermal homogeneity of the field-assisted ion-exchange process, it is not suitable for the fabrication of optical waveguides in large-sized substrates, so the Ag + - Na + thermal ion-exchange method is generally used at present. In view of the above problems, a low loss buried optical waveguide is fabricated on glass substrates by improved K + ion mask technology. The experimental process is divided into three steps: (1) K + ion mask is fabricated on glass substrates by K + - Na + ion exchange; (2) optical waveguides are fabricated by Ag + - Na + ion exchange. (3) The buried waveguide is fabricated by Na + - Ag + ion back-exchange. The transmission loss of the waveguide is 0.23dB/cm and the coupling loss is 0.23dB. Compared with the traditional Ag + - Na + ion exchange, the loss of the optical waveguide is greatly reduced. The improved K + ion mask technology proposed in this paper is suitable for the fabrication of optical interconnection layers in board-level optical interconnections. Based on the physical mechanism of ion exchange and the related experimental parameters, the improved K + ion mask technology is established. The theoretical model of ion exchange is verified by experiments, which provides a tool for fabricating optical waveguides in the future.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN252
本文編號:2205397
[Abstract]:With the development of society, the speed of information transmission and processing has become more and more demanding. Traditional electrical interconnection can not continue to adapt to the development of high-speed information society because of its inherent physical bottleneck. Optical interconnection has become the best way to solve the problem of electrical interconnection because of its advantages of anti-electromagnetic interference, large bandwidth and high interconnection density. The optical waveguide itself can realize small radius bending, and it is easy to realize wavelength division multiplexing technology, so the waveguide interconnection has become a main connection mode in the board-level optical interconnection. Glass-based optical waveguide has the advantages of low loss, good environmental stability, easy integration and low cost, so it is very suitable for the fabrication of optical transmission layer in the board-level optical interconnection. Due to the thermal homogeneity of the field-assisted ion-exchange process, it is not suitable for the fabrication of optical waveguides in large-sized substrates, so the Ag + - Na + thermal ion-exchange method is generally used at present. In view of the above problems, a low loss buried optical waveguide is fabricated on glass substrates by improved K + ion mask technology. The experimental process is divided into three steps: (1) K + ion mask is fabricated on glass substrates by K + - Na + ion exchange; (2) optical waveguides are fabricated by Ag + - Na + ion exchange. (3) The buried waveguide is fabricated by Na + - Ag + ion back-exchange. The transmission loss of the waveguide is 0.23dB/cm and the coupling loss is 0.23dB. Compared with the traditional Ag + - Na + ion exchange, the loss of the optical waveguide is greatly reduced. The improved K + ion mask technology proposed in this paper is suitable for the fabrication of optical interconnection layers in board-level optical interconnections. Based on the physical mechanism of ion exchange and the related experimental parameters, the improved K + ion mask technology is established. The theoretical model of ion exchange is verified by experiments, which provides a tool for fabricating optical waveguides in the future.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN252
【參考文獻】
相關期刊論文 前4條
1 郝寅雷;馮澤明;曾福林;王志堅;楊建義;王明華;;玻璃基交叉波導的損耗特性研究[J];光電子·激光;2015年12期
2 郝寅雷;鄭偉偉;江舒杭;周強;李錫華;楊建義;江曉清;王明華;;玻璃基平面光功分器技術工程化研究[J];紅外與激光工程;2011年02期
3 郝寅雷;鄭偉偉;江舒杭;谷金輝;孫一翎;楊建義;李錫華;周強;江曉清;王明華;;低損耗離子交換玻璃基光波導制備與分析[J];無機材料學報;2009年05期
4 黃騰超,沈亦兵,侯西云,侯昌倫,白劍;離子交換玻璃波導的模型分析[J];中國激光;2003年02期
相關博士學位論文 前2條
1 裴重陽;石墨烯輔助玻璃基集成光學器件的研究[D];浙江大學;2015年
2 鄭偉偉;玻璃基離子交換工藝及波導器件的研究[D];浙江大學;2011年
相關碩士學位論文 前3條
1 石偉丞;玻璃基多模彎曲光波導的設計與制備[D];浙江大學;2014年
2 鄭斌;玻璃基雙層掩埋式光波導的制備與表征[D];浙江大學;2012年
3 陳敘;玻璃基光波導離子交換技術的研究[D];浙江大學;2005年
,本文編號:2205397
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2205397.html
教材專著