改進EMD閾值小波濾波方法
發(fā)布時間:2018-08-25 18:12
【摘要】:下肢自主康復訓練機器人中交流伺服電機電流信號噪聲嚴重影響電機力矩辨識精度。為解決非線性非平穩(wěn)信號的濾波去噪問題,提出一種基于經驗模態(tài)分解(EMD)的改進閾值小波濾波算法。首先對EMD最佳去噪層數(shù)和閾值小波的閾值處理函數(shù)進行分析和改進,然后將兩種改進方法相結合,最后對Matlab中的Heavy sine信號添加高斯噪聲,分別利用改進方法和軟、硬閾值等濾波方法進行去噪實驗。仿真實驗結果表明,改進算法能有效去除非線性非平穩(wěn)信號中噪聲信號。與EMD和閾值小波等其他濾波方法相比,本文濾波算法去噪后信噪比更大,均方根誤差更小,濾波效果更好。
[Abstract]:The motor torque identification accuracy is seriously affected by the current signal noise of AC servo motor in the autonomous rehabilitation training robot of lower extremity. An improved threshold wavelet filtering algorithm based on empirical mode decomposition (EMD) is proposed to solve the problem of filtering and denoising nonlinear non-stationary signals. First, the optimal denoising layer number of EMD and the threshold processing function of threshold wavelet are analyzed and improved, then the two improved methods are combined. Finally, Gao Si noise is added to the Heavy sine signal in Matlab, and the improved method and soft are used respectively. The denoising experiment is carried out by hard threshold and other filtering methods. Simulation results show that the improved algorithm can effectively remove noise signals from nonlinear non-stationary signals. Compared with other filtering methods, such as EMD and threshold wavelet, the SNR of this filtering algorithm is larger, the root mean square error is smaller, and the filtering effect is better.
【作者單位】: 西安交通大學機械工程學院;
【基金】:國家自然科學基金重大研究計劃項目(91420301)資助
【分類號】:TN713;TP242
本文編號:2203694
[Abstract]:The motor torque identification accuracy is seriously affected by the current signal noise of AC servo motor in the autonomous rehabilitation training robot of lower extremity. An improved threshold wavelet filtering algorithm based on empirical mode decomposition (EMD) is proposed to solve the problem of filtering and denoising nonlinear non-stationary signals. First, the optimal denoising layer number of EMD and the threshold processing function of threshold wavelet are analyzed and improved, then the two improved methods are combined. Finally, Gao Si noise is added to the Heavy sine signal in Matlab, and the improved method and soft are used respectively. The denoising experiment is carried out by hard threshold and other filtering methods. Simulation results show that the improved algorithm can effectively remove noise signals from nonlinear non-stationary signals. Compared with other filtering methods, such as EMD and threshold wavelet, the SNR of this filtering algorithm is larger, the root mean square error is smaller, and the filtering effect is better.
【作者單位】: 西安交通大學機械工程學院;
【基金】:國家自然科學基金重大研究計劃項目(91420301)資助
【分類號】:TN713;TP242
【相似文獻】
相關期刊論文 前9條
1 潘泉;孟晉麗;張磊;程詠梅;張洪才;;小波濾波方法及應用[J];電子與信息學報;2007年01期
2 任波,李環(huán);數(shù)字圖像的一種小波濾波算法[J];沈陽工業(yè)學院學報;2004年01期
3 熊科;;小波濾波中的閾值研究[J];電力自動化設備;2008年10期
4 李順江;賈耀曾;崔鳳奎;;動不平衡信號的濾波方法研究[J];軟件;2011年12期
5 呂常波;陳曉曾;翟永波;;小波濾波在光纖陀螺信號處理中的應用[J];中國西部科技;2010年06期
6 吳朝霞,吳飛,蔣學英,李志全;基于光學小波濾波的光纖光柵傳感解調方法的研究[J];傳感技術學報;2004年03期
7 夏洪瑞;葛川慶;董江偉;;諧波小波濾波功效分析[J];勘探地球物理進展;2007年03期
8 趙磊;趙連玉;;Haar小波濾波算法的研究[J];天津理工大學學報;2009年02期
9 孟晉麗;潘泉;張洪才;;基于相鄰尺度積系數(shù)的半軟閾值小波濾波[J];電子與信息學報;2007年07期
相關會議論文 前1條
1 田顏鋒;劉曉剛;張冬林;郭占鋒;;航空重力數(shù)據(jù)小波濾波中的頻泄現(xiàn)象分析[A];中國地球物理·2009[C];2009年
,本文編號:2203694
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2203694.html
教材專著