天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

集成微熱管的LED硅基板研制

發(fā)布時間:2018-08-19 16:46
【摘要】:全球能源短缺的憂慮再度加劇,節(jié)能減排是我們面臨的重要問題。發(fā)光二級管(LED)作為一種新型半導(dǎo)體固態(tài)冷光源在照明領(lǐng)域逐步推廣,并以其節(jié)能、環(huán)保的優(yōu)勢為大家熟知。然而,在現(xiàn)有研究水平下,只有15-30%的輸入功率轉(zhuǎn)化為光能,其余均轉(zhuǎn)化為熱量,造成LED芯片的結(jié)溫升高,使得發(fā)光譜線漂移、光衰提早、壽命縮短。因此提高散熱效率并實現(xiàn)結(jié)溫穩(wěn)定控制,是大功率LED器件設(shè)計和制造中的關(guān)鍵問題。硅的導(dǎo)熱系數(shù)較高且加工工藝成熟,是目前LED模組基板材料的發(fā)展趨勢之一。微熱管采用相變傳熱的原理具有很高的導(dǎo)熱系數(shù),因此本文中集成熱管的LED硅基板模組探索了一種高效散熱新方法以減小從芯片到環(huán)境的熱阻,將平板槽道微熱管和蒸汽腔微熱管集成于硅基板上,減少了熱界面。本文針對3-10W不同功率的LED模組,采用MEMS加工工藝在硅基板兩面分別加工微槽道和LED電極,與具有蒸汽腔的Pyrex7740玻璃蓋板或鋁翅片鍵合形成集成微熱管的LED硅基板本體結(jié)構(gòu)。對微熱管抽真空后灌注一定量除氣后的去離子水作為工質(zhì)后,采用導(dǎo)電銀漿將1W的LED芯片固晶到LED硅基板的基座上,并采用超聲引線的方法,用金線實現(xiàn)芯片和電極連接。對研制的硅基板分別在真空絕熱環(huán)境中和大氣環(huán)境中進(jìn)行導(dǎo)熱性能測試,實驗表明集成微熱管的LED硅基板均能實現(xiàn)有效散熱,梯形結(jié)構(gòu)平板槽道微熱管導(dǎo)熱系數(shù)較硅提高5.65倍。為研究微槽道結(jié)構(gòu)尺寸和表面能對平板槽道微熱管性能的影響,改變硅基微槽道形狀,設(shè)計了梯形和側(cè)壁二級結(jié)構(gòu)。接觸角測量表明,采用兩種結(jié)構(gòu)微槽道比平行槽道更親水,導(dǎo)熱性能測試表明兩種結(jié)構(gòu)槽道微熱管與同尺寸平行槽道微熱管的當(dāng)量導(dǎo)熱系數(shù)分別提升了18.52.151.83%和7.71-9.62%。采用電鑄銅柱和沉積石墨烯改性硅微槽道特性。其中,電鑄銅柱提高了槽道的親水性,電噴霧沉積的片狀石墨烯使槽道疏水。導(dǎo)熱性能測試發(fā)現(xiàn)銅柱改性后的平板槽道微熱管以蒸汽腔方式工作,而石墨烯改性后的平板槽道微熱管比同尺寸未改性微熱管的穩(wěn)定溫度降低了4.87%。此外,電鑄工藝在硅基板上加工的銅微槽道比同尺寸硅微槽道更親水,使當(dāng)量導(dǎo)熱系數(shù)提升了約17%。以上對平板槽道微熱管改性方法可以改善微槽道親疏水性,改變毛細(xì)牽引力,使管內(nèi)工質(zhì)循環(huán)更有效,從而提升微熱管性能。綜上,本文針對大功率LED器件,設(shè)計并制作了集成微熱管的LED硅基板,對其槽道結(jié)構(gòu)和表面特性進(jìn)行了優(yōu)化,結(jié)果表明研制的基板有效提高了熱量傳輸能力,研究結(jié)果對大功率LED器件的高效熱輸運(yùn)和結(jié)溫的穩(wěn)定控制具有指導(dǎo)和借鑒意義。
[Abstract]:Global energy shortage concerns are growing again, energy conservation and emission reduction is an important problem we face. As a new type of semiconductor solid-state cold light source, the light-emitting secondary transistor (LED) has been gradually popularized in the field of lighting, and is well known for its advantages of energy saving and environmental protection. However, at the present research level, only 15-30% of the input power is converted to light energy, while the rest is converted into heat, which results in the rise of junction temperature of LED chip, the drift of luminescence spectrum line, the early light decay and the shortening of the lifetime. Therefore, it is a key problem in the design and manufacture of high power LED devices to improve the efficiency of heat dissipation and to realize the stable control of junction temperature. Silicon has high thermal conductivity and mature processing technology, which is one of the development trends of LED module material. The principle of phase change heat transfer in micro-heat pipe has high thermal conductivity. Therefore, the LED silicon substrate module integrated with heat pipe in this paper has explored a new method of high efficiency heat dissipation in order to reduce the thermal resistance from chip to environment. The thermal interface is reduced by integrating the flat groove micro-heat pipe and the steam cavity micro-heat pipe on the silicon substrate. In this paper, for 3-10W LED modules with different power, microchannel and LED electrode are machined on both sides of silicon substrate by MEMS process. The bulk structure of LED silicon substrate integrated microheat pipe is formed by bonding with Pyrex7740 glass cover plate with steam cavity or aluminum fin. After a certain amount of deionized water was poured into the microheat pipe after vacuum, the 1W LED chip was immobilized onto the base of the LED silicon substrate by conducting silver paste, and the connection between the chip and the electrode was realized by the method of ultrasonic lead and gold wire. The thermal conductivity of the fabricated silicon substrate in vacuum adiabatic environment and atmospheric environment is tested. The experimental results show that the LED silicon substrate integrated with micro-heat pipe can effectively dissipate heat, and the thermal conductivity of trapezoidal flat channel microheat pipe is 5.65 times higher than that of silicon. In order to study the effect of the structure size and surface energy of microchannel on the performance of microheat pipe with flat groove channel, the trapezoidal and lateral secondary structures were designed to change the shape of microgroove channel on silicon substrate. The measurement of contact angle shows that the microchannel with two structures is more hydrophilic than the parallel channel. The thermal conductivity tests show that the equivalent thermal conductivity of the micro-heat pipe with the same size and the same size increases by 18.52.151.83% and 7.71-9.62, respectively. The characteristics of silicon microchannel were modified by electroforming copper column and graphene deposition. Electroforming copper column improved the hydrophilicity of the channel, and the electrospray deposited flake graphene made the channel hydrophobic. The results of thermal conductivity test show that the copper column modified flat channel micro-heat pipe works in a steam chamber, while the graphene modified flat groove channel micro-heat pipe has a lower stable temperature of 4.87 than that of the same size unmodified micro-heat pipe. In addition, the copper microchannel fabricated on silicon substrate by electroforming process is more hydrophilic than that of silicon microchannel of the same size, which increases the equivalent thermal conductivity by about 17%. The above methods can improve the hydrophobicity of the microchannel, change the capillary tractive force, make the working fluid circulation more effective, and improve the performance of the micro-heat pipe. In summary, the LED silicon substrate integrated with microheat pipe is designed and fabricated for high power LED devices. The structure and surface characteristics of the channel are optimized. The results show that the developed substrate can effectively improve the heat transfer capacity. The results can be used as guidance and reference for high efficiency thermal transport and stability control of junction temperature for high power LED devices.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN312.8

【共引文獻(xiàn)】

相關(guān)期刊論文 前2條

1 殷錄橋;張金龍;宋朋;翁菲;張建華;;熱界面材料對高功率LED熱阻的影響[J];光電子.激光;2013年10期

2 張建新;牛萍娟;武志剛;王景祥;李紅月;;大功率LED散熱器性能的雙目標(biāo)優(yōu)化[J];電工技術(shù)學(xué)報;2014年04期

相關(guān)博士學(xué)位論文 前3條

1 袁冬;LED光熱結(jié)構(gòu)優(yōu)化設(shè)計[D];華南理工大學(xué);2013年

2 高鐵成;高效率LED汽車前照燈關(guān)鍵技術(shù)研究[D];天津大學(xué);2014年

3 鄭懷;大功率LED封裝工藝中流動分析及其工程應(yīng)用[D];華中科技大學(xué);2014年

,

本文編號:2192240

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2192240.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fb728***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com