基于時頻分析和復(fù)數(shù)域的模擬電路故障診斷研究
[Abstract]:Facing the high-speed integration and large-scale of circuits, people urgently need to study more advanced, efficient and intelligent analog circuit fault diagnosis theory and technology, so as to meet the high requirements of electronic system security, reliability and testability in the field of modern electronic industry. Faults caused by overlapping between obstacles have become the focus of analog circuit fault diagnosis. Time-frequency analysis can provide the distribution information of signals at the same time in time and frequency, and can clearly scale the frequency and amplitude of signals at any time. Complex-domain analysis transforms the time-domain signals into complex-domain signals, using real and imaginary parts. Both of them can provide more distinguishable detail features for fault diagnosis. This paper focuses on time-frequency analysis and complex domain analysis to study the parameter fault diagnosis of analog circuits and proposes a new diagnosis method. The results are as follows: (1) A fault diagnosis method for analog circuits based on set empirical mode decomposition (EMD) and Extreme Learning Machine (EEMD-ELM) is proposed. In this paper, a method of constructing fault eigenvectors of analog circuits by EEMD combined with relative entropy and kurtosis is proposed. The single-parameter and multi-parameter fault diagnosis is performed by ELM. First, the output signals of normal state and fault state responses are collected respectively, and then the response outputs are decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The kurtosis of the circuit state IMF and the relative entropy between the circuit normal state IMF and the fault state IMF are constructed as fault feature vectors, which are used as input samples of the ELM for fault diagnosis. The fault eigenvector optimization of analog circuits based on local mean decomposition (LMD) is studied and a new optimization strategy based on clustering method is proposed.The principle and decomposition process of LMD are studied in detail.The response output signal of the circuit under test is decomposed into a series of product function (PF) signals by LMD technology. The dimension of eigenvectors will increase with the number of PFs decomposed by signals. Therefore, a new feature optimization strategy is proposed to reduce the dimension of eigenvectors. The simulation results show that this strategy can effectively reduce the dimension of fault feature vectors and the amount of classifier calculation, and also can effectively diagnose faults. (3) A complex domain fault modeling method based on least square circle fitting algorithm is proposed. Fault response of analog circuits is continuous and infinite, but the fault eigenvalues stored in the traditional fault diagnosis model dictionary are discrete, which inevitably leads to incomplete fault types in the dictionary. Based on the theory of fault modeling in complex domain of analog circuit, the least square circle fitting algorithm is proposed to fit the fault characteristic function as the fault characteristic, and the corresponding fault diagnosis method is proposed for the model. The simulation and actual circuit experiments show that the method can be well implemented. Fault diagnosis. (4) Fault sample selection based on ant colony algorithm. In traditional test validation experiments, random test sample selection method based on fault rate often ignores the selection of propagation faults with small fault rate, but propagation faults may cause very serious diffusion faults once they occur. In this paper, the directed graph method and ant colony algorithm are used to search the optimal propagation path of propagation faults, and then a set of subsequent propagation paths is established for each fault module (device). According to the new sample selection strategy, the test samples are optimized. Simulation results show that the strategy can improve the selection rate of propagation faults and test performance. Strength and reduce use risk.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TN710
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 何星;王宏力;孫淵;姜偉;;基于提升奇異值分解和EEMD的IMU模擬電路故障特征提取方法[J];信息與控制;2014年03期
2 姜萬錄;劉云杰;朱勇;;小波脊線解調(diào)與兩次EMD分解相結(jié)合的故障識別方法及應(yīng)用研究[J];儀器儀表學(xué)報;2013年05期
3 胡海濤;李志華;;基于頻率特性的模擬電路故障診斷研究[J];計算機(jī)與現(xiàn)代化;2012年06期
4 宋國明;王厚軍;劉紅;姜書艷;;基于提升小波變換和SVM的模擬電路故障診斷[J];電子測量與儀器學(xué)報;2010年01期
5 李天梅;邱靜;劉冠軍;;基于故障率的測試性驗(yàn)證試驗(yàn)故障樣本分配方案[J];航空學(xué)報;2009年09期
6 侯青劍;王宏力;;一種基于EMD的模擬電路故障特征提取方法[J];系統(tǒng)工程與電子技術(shù);2009年06期
7 王厚軍;;可測性設(shè)計技術(shù)的回顧與發(fā)展綜述[J];中國科技論文在線;2008年01期
8 謝永樂;;模擬VLSI電路故障診斷的相關(guān)分析法[J];半導(dǎo)體學(xué)報;2007年12期
9 謝永樂;;模擬VLSI測試的小波濾波器組方法[J];計算機(jī)輔助設(shè)計與圖形學(xué)學(xué)報;2007年11期
10 袁海英;陳光;謝永樂;;故障診斷中基于神經(jīng)網(wǎng)絡(luò)的特征提取方法研究[J];儀器儀表學(xué)報;2007年01期
相關(guān)博士學(xué)位論文 前8條
1 胡鴻志;基于相量分析的模擬電路故障診斷方法研究[D];電子科技大學(xué);2015年
2 李西峰;信息論觀點(diǎn)下的模擬電路故障診斷方法研究[D];電子科技大學(xué);2014年
3 李晴;基于優(yōu)化機(jī)器學(xué)習(xí)算法的模擬電路故障診斷研究[D];湖南大學(xué);2013年
4 楊賢昭;基于經(jīng)驗(yàn)?zāi)B(tài)分解的故障診斷方法研究[D];武漢科技大學(xué);2012年
5 楊成林;模擬故障字典技術(shù)測點(diǎn)選擇問題研究[D];電子科技大學(xué);2011年
6 宋國明;基于提升小波及SVM優(yōu)化的模擬電路智能故障診斷方法研究[D];電子科技大學(xué);2010年
7 李天梅;裝備測試性驗(yàn)證試驗(yàn)優(yōu)化設(shè)計與綜合評估方法研究[D];國防科學(xué)技術(shù)大學(xué);2010年
8 唐靜遠(yuǎn);模擬電路故障診斷的特征提取及支持向量機(jī)集成方法研究[D];電子科技大學(xué);2010年
相關(guān)碩士學(xué)位論文 前2條
1 王宏;模擬電路故障診斷故障字典法研究[D];西安電子科技大學(xué);2007年
2 劉丹;模擬電路故障診斷中故障字典應(yīng)用的研究[D];華中科技大學(xué);2006年
,本文編號:2188550
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2188550.html