基于微波光子技術(shù)的微波信號參數(shù)測量
[Abstract]:In the field of radar applications and electronic warfare, the complex electromagnetic environment makes the radar receiver processing the signal more difficult. The measurement of the parameters of the microwave signal is a very important task in the modern defense system and the electronic information system. However, with the rapid development of the information technology and the escalation of the weapon and equipment, the microwave signal is covered. The frequency band is getting bigger and bigger. Because the traditional electronic technology is restricted by the electronic bottleneck, it is difficult to deal with the large bandwidth microwave signal. At this time, a new subject 00 microwave photonics is born. The microwave photonics is a new field combined with microwave and optics. The microwave photonics technique is due to its wide bandwidth, low loss and strong resistance to electromagnetic interference. In recent years, with the rapid development of the microwave photon technology, the microwave photon signal processing technology has also aroused the great interest of the researchers and gradually become the hot spot of research. This paper first discusses the research background of microwave photonic technology and the current research status at home and abroad. On this basis, the microwave photon signal processing technology is emphatically studied, and the electronic warfare receiver model based on the microwave photon link is established, and the characteristics and working principles of some key optical devices involved in the electronic warfare receiver are studied. Secondly, the bottleneck of the ultra wideband signal processing is restricted in the electric field, In particular, the optical compression sampling and frequency measurement technique combined with optoelectronic technology is proposed. One method is to use the spectrum of the ultra narrow pulse to sample the microwave signal with the energy balanced comb pulse, and then convert the original microwave signal down to a certain area far below the Nyquist sampling frequency; the other is based on the light time domain. The optical compression sampling system of tensile and compressed sensing can accurately measure the signal frequency domain. The system front-end optical time domain stretching system reduces the input high speed microwave signal effectively in the optical domain after the ultrashort Gauss optical pulse is transmitted through the single mode dispersion fiber, and slows the input of the high-speed microwave signal in the optical domain. The signal sampling bandwidth is sampled, and the back end uses compressed sensing technology to compress the decelerated signal in the electric field two times, thus greatly reducing the sampling frequency of the analog to digital converter, and then using the obtained under sampled data to reconstruct the frequency spectrum of the microwave signal through the compressed sensing reconstruction algorithm, and to measure the frequency of the signal accurately. The two methods are discussed in principle, simulation verification and result analysis to verify the feasibility of the system. Finally, a method of measuring the arrival time difference and the arrival angle of the key parameters of the microwave signal based on the microwave photon signal processing technology is proposed, and the direction of arrival is further estimated by measuring the phase difference of the received micro wave signal. On the basis of the improved system, a structural model of the integrated system of multi angle measurement and frequency measurement is proposed.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN015
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 南利平 ,呂洪國;不要追求高檔的微波信號源[J];國外電子測量技術(shù);1999年03期
2 阮錦屏;一種改善和監(jiān)視射頻或微波信號相位噪聲的新方法[J];電子學(xué)報;1990年05期
3 ;泰克確立寬帶射頻/微波信號發(fā)生能力新指標(biāo)[J];國外電子測量技術(shù);2011年02期
4 ;健康·新知[J];新聞周刊;2002年33期
5 映青;;LSA發(fā)射機[J];半導(dǎo)體情報;1972年01期
6 王沁泉;陳福深;;光學(xué)外差法產(chǎn)生微波信號特性的研究[J];半導(dǎo)體光電;2009年06期
7 ;WTX-3固體信號源的研制[J];電子測量技術(shù);1977年03期
8 ;R&S SMF100A為微波信號源樹立了信號純度和輸出功率的新標(biāo)準(zhǔn)[J];電子測試;2009年08期
9 劉才斌;魏友國;陳運濤;;VXI微波信號源儀器模塊的設(shè)計與實現(xiàn)[J];微計算機信息;2006年04期
10 賈青松;王天樞;張鵬;孫鴻偉;董科研;劉鑫;孔梅;姜會林;;基于雙波長布里淵光纖激光器的微波信號產(chǎn)生[J];中國激光;2014年07期
相關(guān)會議論文 前1條
1 胡文華;許東兵;雙愛瓊;王竹;;虛擬儀器在微波信號源中設(shè)計的應(yīng)用[A];第六屆全國計算機應(yīng)用聯(lián)合學(xué)術(shù)會議論文集[C];2002年
相關(guān)博士學(xué)位論文 前4條
1 郭勇;微波信號光子學(xué)產(chǎn)生及處理的理論與實驗研究[D];電子科技大學(xué);2016年
2 喬云飛;基于微波光子學(xué)的可調(diào)微波信號源[D];浙江大學(xué);2013年
3 李沫;RoF系統(tǒng)中60GHz傳輸技術(shù)及光域微波信號處理技術(shù)研究[D];清華大學(xué);2011年
4 于源;全光微波信號處理技術(shù)的研究[D];華中科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 梁建惠;光電振蕩器的性能與設(shè)計研究[D];貴州大學(xué);2015年
2 曹春雨;基于FPGA的窄脈沖微波信號參數(shù)測試的研究與實現(xiàn)[D];南京理工大學(xué);2014年
3 李卉梓;基于光子學(xué)技術(shù)的相位可調(diào)諧倍頻微波信號發(fā)生器的研究[D];華中科技大學(xué);2014年
4 翁俊;微波信號光纖穩(wěn)相傳輸研究[D];西南交通大學(xué);2016年
5 童玲;C波段微波信號相干光傳輸關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2016年
6 楊鳳驍;微波信號光纖傳輸穩(wěn)相技術(shù)研究[D];電子科技大學(xué);2016年
7 尹彩霞;基于M-Z調(diào)制器的光學(xué)諧波倍頻產(chǎn)生微波信號的研究[D];西華師范大學(xué);2016年
8 訾月姣;基于光纖鎖模腔的光子微波信號產(chǎn)生技術(shù)研究[D];貴州大學(xué);2016年
9 劉文雅;基于微波光子學(xué)的微波信號生成技術(shù)研究[D];西安電子科技大學(xué);2015年
10 馬寧;基于微波光子技術(shù)的微波信號參數(shù)測量[D];西安電子科技大學(xué);2015年
,本文編號:2156065
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2156065.html