約束條件下的濾波算法研究
[Abstract]:Target state estimation and fusion filtering, as the core part of target tracking technology, have been paid much attention to and widely used in military and civil fields, such as intelligence monitoring, traffic control, intelligent navigation, medical diagnosis, etc. However, in the actual process of state estimation, people always have to do a lot of research. The point is limited to the original data and does not use some known prior information. If we can use prior information to establish constraints and apply the effective constraints to the filtering process, then we can improve the filtering accuracy of the algorithm, thus making the estimated value of the filter closer to the true value of the system. Therefore, the needle is more close to the true value of the system. Therefore, the needle is more close to the true value of the system. It is necessary to study the filtering algorithm under the constraint conditions. This topic comes from the research on several problems of the multi-objective tracking method based on the stochastic finite set theory (NO.61201118), which is based on the National Natural Science Foundation of China. The filtering algorithm under the constraint conditions is analyzed and studied, and the constraint conditions are based on the state of the system. The constraint problems can be divided into two kinds, namely, linear constrained filtering and nonlinear constrained filtering. The filtering problem under linear constraints is more easily solved than the filtering problem under the nonlinear constraints. Many effective solutions have been put forward to deal with the problem. So, this paper focuses on the study of the nonlinear contract. Two new filtering algorithms are given on the basis of existing constrained filtering algorithms to solve the problem of constraints. Experimental results show that the new algorithm can effectively improve the precision of state estimation and the time complexity of the algorithm is low. The main work contents of this paper are as follows: (1) iterative shrinkage Nonlinear state constraint filtering nonlinear state constraint filtering is a problem often encountered in practice. Under the Gauss assumption of state vector, a class of iterative shrinkage nonlinear state constraint filtering method is proposed. This method combines with volume Calman filter, integral Calman filter, central differential Calman filter and unsensitive. Several different numerical methods are used to approximate the integral, and several algorithms to solve the nonlinear state constraints are obtained by using several different numerical methods. In order to reduce the influence of the base point error to the filtering results, an iterative method is used to apply a series of noise to the non linear state constraint function in the process of implementation, so that the quantity of the non linear state constraint function is applied. In the process of updating, the filtered variance is gradually converged and the filter estimation results are improved. The experimental results show that the filtering accuracy is higher, the time complexity is moderate, the Jacobi matrix or the Hessen matrix is not required. (2) the nonlinear inequality state constraint filtering based on the sequence column two times programming. In this algorithm, an iterative unsensitive Calman filtering algorithm based on sequence two order programming is proposed for nonlinear inequality constraint filtering problem. The algorithm combines the idea of optimization algorithm on the basis of iterative unsensitive Calman filtering and the optimal solution of nonlinear inequality constraints is solved by sequential two programming optimization. In experimental verification, each iteration problem is considered as a two time programming subproblem. Its descent direction is determined by solving the subproblem, and the optimal solution of the constraint problem can be obtained by repeating the above steps. In order to ensure the convergence of the algorithm, the goal function is minimized by the benefit function, and the constraint conditions are entered into the inequality constraints. In addition, the positive definite matrix is used to approximate the hahson matrix to reduce the time spent in the algorithm. The experimental results show that the new algorithm can effectively improve the precision of state estimation, obtain higher filtering precision, and have a low time complexity when dealing with the nonlinear inequality state constraint filtering problem.
【學(xué)位授予單位】:西安工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN713
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張軍輝;李響;;改進(jìn)的粒子濾波算法性能分析[J];鄭州輕工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年02期
2 于金霞;湯永利;許景民;;粒子濾波算法改進(jìn)策略研究[J];計(jì)算機(jī)應(yīng)用研究;2012年02期
3 賀利文;李彥鵬;范波;;一種改進(jìn)的α-β濾波算法[J];現(xiàn)代電子技術(shù);2012年21期
4 金隱華;簡(jiǎn)單且理想的抗50周工頻濾波算法[J];電子技術(shù)應(yīng)用;1996年03期
5 邵志勇,張學(xué)東;一種基于各向同性集的模糊濾波算法[J];大連理工大學(xué)學(xué)報(bào);2004年02期
6 景曉軍,尚勇,余農(nóng);基于三角模融合準(zhǔn)則的濾波算法[J];電子學(xué)報(bào);2004年06期
7 胡紹林,黃劉生;非平穩(wěn)信號(hào)的2懔2型雙重中值容錯(cuò)濾波算法[J];系統(tǒng)仿真學(xué)報(bào);2004年07期
8 康健;芮國(guó)勝;;粒子濾波算法的關(guān)鍵技術(shù)應(yīng)用[J];火力與指揮控制;2007年04期
9 饒文碧;雷育華;王君;;粒子濾波算法在目標(biāo)跟蹤中的應(yīng)用[J];武漢理工大學(xué)學(xué)報(bào);2009年03期
10 邊平勇;;粒子濾波算法在貝葉斯模型中的應(yīng)用[J];統(tǒng)計(jì)與決策;2009年14期
相關(guān)會(huì)議論文 前10條
1 李龍?jiān)?彭玉華;;小波變換模極大值域的一種自動(dòng)濾波算法的實(shí)現(xiàn)[A];第十一屆全國(guó)信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2003)論文集[C];2003年
2 李慶奎;吳星;崔健勇;陳勤勤;;模糊漸消濾波算法[A];中國(guó)測(cè)繪學(xué)會(huì)九屆四次理事會(huì)暨2008年學(xué)術(shù)年會(huì)論文集[C];2008年
3 黃河;;插值粒子濾波算法的研究[A];2006通信理論與技術(shù)新進(jìn)展——第十一屆全國(guó)青年通信學(xué)術(shù)會(huì)議論文集[C];2006年
4 胡紹林;黃劉生;;非平穩(wěn)信號(hào)的2(?)2型雙重中值容錯(cuò)濾波算法[A];2003年中國(guó)智能自動(dòng)化會(huì)議論文集(下冊(cè))[C];2003年
5 尹建君;張建秋;;混合線性/非線性聯(lián)邦濾波算法及其在組合導(dǎo)航中的應(yīng)用[A];2007系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年
6 張賽;劉新學(xué);劉揚(yáng);;一種改進(jìn)的紅外圖像濾波算法[A];2007年光電探測(cè)與制導(dǎo)技術(shù)的發(fā)展與應(yīng)用研討會(huì)論文集[C];2007年
7 楊秀華;陳濤;王延風(fēng);吉桐伯;;光電跟蹤目標(biāo)的非線性濾波算法研究[A];第二屆全國(guó)信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2004年
8 秦臻;何順華;朱號(hào)東;;非線性濾波算法在動(dòng)態(tài)導(dǎo)航中的應(yīng)用[A];江蘇省測(cè)繪學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集[C];2011年
9 李勇;陳書明;陳勝剛;;一種基于YHFT-Matrix DSP的去塊效應(yīng)濾波算法的向量化實(shí)現(xiàn)[A];第十五屆計(jì)算機(jī)工程與工藝年會(huì)暨第一屆微處理器技術(shù)論壇論文集(B輯)[C];2011年
10 陳大力;薛定宇;潘峰;;一種新型的雙十字模糊濾波算法[A];2006中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];2006年
,本文編號(hào):2139557
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2139557.html