基于嚴(yán)格耦合波理論的光柵結(jié)構(gòu)參數(shù)測量方法
[Abstract]:As an important optical element, diffraction grating plays an irreplaceable role in many fields, and the measurement of its structural parameters is of great significance. With the continuous development of grating manufacturing technology and applications, the existing measurement methods of grating structure parameters, such as atomic force microscope, scanning tunneling microscope, scanning electron microscope and transmission electron microscope, have been unable to take account of fast and low cost. Non-destructive and high-precision measurement requirements. In recent years, optical scattering measurement method has provided a new solution to meet the above measurement requirements at the same time. There are two important problems to be solved in the practical application of this method, namely, the forward problem grating diffraction modeling and the inverse problem structure parameter solution. In order to solve the above problems, a grating structure parameter measurement method based on strictly coupled wave theory is proposed in this paper. The two key problems of grating diffraction modeling and parameter solving are analyzed and verified by experiments. The measurement of grating structure parameters is realized. The main research contents are as follows: (1) grating diffraction modeling based on strictly coupled wave theory. As a vector diffraction theory, the strictly coupled wave theory can accurately establish the optical characteristic model of the grating and calculate the diffraction efficiency. The grating with one dimensional arbitrary structure is approximated as a mathematical equivalent model, and the diffraction characteristic model of the grating is established based on the strictly coupled wave theory, by which the diffraction efficiency of the grating can be solved accurately. Based on the above model, the variation of diffraction efficiency under different incident conditions and different grating structure parameters is simulated and analyzed, which provides a theoretical basis for the inversion model of grating structure parameters. (2) the research of grating diffraction efficiency inversion grating structural parameters. The model of grating diffraction field is very complicated, the calculation of diffraction efficiency has no analytic function, it needs to be modeled based on inverse problem analysis method. In this paper, BP neural network is selected to construct the inversion model, and the mapping relationship between grating diffraction efficiency and structural parameters is explored. Using a typical three-layer structure, six input variables are determined, one is diffraction efficiency under different incident conditions, the other is two output variables, which are groove depth and duty cycle, respectively. The nonlinear mapping between input and output variables is analyzed. The Levenberg-Marquardt algorithm is used to optimize the training process, which improves the accuracy and accelerates the convergence speed. The model of diffraction efficiency inversion of grating structure parameters is established, and the correlation of the model is analyzed. The model has strong generalization ability and learning ability. (3) Experimental verification of grating structure parameter measurement. In this paper, a grating diffraction efficiency measurement system is established, and the diffraction efficiency of various gratings is measured. The comparison between the measured results and the simulation results is within 鹵3% error. Based on the above optical characteristic model and the inversion model of the structure parameters, the structural parameters of the grating are retrieved by measuring the diffraction efficiency. Compared with 434nm and duty cycle 0.325, the relative error of groove depth and duty cycle obtained by this method is 0.23 and 0.92 respectively. The experimental results show that the method based on grating diffraction efficiency can achieve fast, low cost, non-destructive and high precision measurement of grating structure parameters.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN25
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 陳修國;袁奎;杜衛(wèi)超;陳軍;江浩;張傳維;劉世元;;基于Mueller矩陣成像橢偏儀的納米結(jié)構(gòu)幾何參數(shù)大面積測量[J];物理學(xué)報;2016年07期
2 董正瓊;劉世元;陳修國;石雅婷;張傳維;江浩;;基于靈敏度分析的一維納米結(jié)構(gòu)光學(xué)散射測量條件優(yōu)化配置[J];紅外與毫米波學(xué)報;2016年01期
3 陳修國;劉世元;張傳維;吳懿平;馬智超;孫堂友;徐智謀;;基于Mueller矩陣橢偏儀的納米壓印模板與光刻膠光柵結(jié)構(gòu)準(zhǔn)確測量[J];物理學(xué)報;2014年18期
4 馬智超;徐智謀;彭靜;孫堂友;陳修國;趙文寧;劉思思;武興會;鄒超;劉世元;;基于光譜橢偏儀的納米光柵無損檢測[J];物理學(xué)報;2014年03期
5 溫朗楓;熊偉;李國光;陳樹強(qiáng);付永啟;;嚴(yán)格耦合波收斂層數(shù)的研究[J];中國科技論文;2013年01期
6 姚立忠;李太福;易軍;蘇盈盈;胡文金;肖大志;;神經(jīng)網(wǎng)絡(luò)模型的透明化及輸入變量約簡[J];計算機(jī)科學(xué);2012年09期
7 劉洪興;張巍;鞏巖;;光柵參數(shù)測量技術(shù)研究進(jìn)展[J];中國光學(xué);2011年02期
8 劉莉;;光柵應(yīng)用發(fā)展現(xiàn)狀[J];長沙大學(xué)學(xué)報;2009年05期
9 陳剛;吳建宏;陳新榮;劉全;;鍍鉻基片全息光柵光刻膠掩模槽形參量光譜檢測方法[J];中國激光;2006年06期
相關(guān)會議論文 前1條
1 李立峰;;光柵的電磁場理論及其應(yīng)用[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
相關(guān)博士學(xué)位論文 前3條
1 朱金龍;納米結(jié)構(gòu)光學(xué)散射測量中的形貌重構(gòu)方法研究[D];華中科技大學(xué);2015年
2 陳修國;基于廣義橢偏儀的納米結(jié)構(gòu)測量理論與方法研究[D];華中科技大學(xué);2013年
3 魏石銘;衍射度量術(shù)在光柵形貌測量與小階梯光柵制作中的應(yīng)用[D];清華大學(xué);2010年
相關(guān)碩士學(xué)位論文 前3條
1 劉麟躍;基于透射光譜反演法的亞波長光柵槽形參數(shù)測量技術(shù)研究[D];蘇州大學(xué);2015年
2 尚海;基于嚴(yán)格耦合波理論的散射場顯微鏡建模與分析[D];合肥工業(yè)大學(xué);2015年
3 劉玉龍;橢偏儀校準(zhǔn)方法研究[D];中國計量科學(xué)研究院;2014年
,本文編號:2134809
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2134809.html