高壓雪崩二極管的研究
發(fā)布時間:2018-07-11 10:02
本文選題:雪崩擊穿耐量 + 緩沖層; 參考:《沈陽工業(yè)大學(xué)》2015年碩士論文
【摘要】:近年來功率半導(dǎo)體器件的應(yīng)用已經(jīng)拓展到各個領(lǐng)域,對于器件的可靠性要求越來越嚴(yán)格。而在大功率應(yīng)用中,高壓二極管作為維持功率器件穩(wěn)定運行的基本單元,其自身的耐用性顯得十分重要。在一些場合需要功率二極管工作在雪崩擊穿模式下,因此功率二極管應(yīng)具有一定的雪崩耗散能量(本文稱雪崩擊穿耐量)。如何提高高壓功率二極管的雪崩擊穿耐量是目前國內(nèi)外在功率器件研究領(lǐng)域的新課題。本文以提高功率二極管的雪崩擊穿耐量為目標(biāo),設(shè)計耐壓2300V的高壓雪崩二極管。 本文的核心思想是在對高壓雪崩二極管的雪崩擊穿特性進行理論和仿真分析的基礎(chǔ)上,,分析雪崩損壞機制,總結(jié)具有提高雪崩擊穿耐量的結(jié)構(gòu),并對主要結(jié)構(gòu)進行仿真分析和優(yōu)化設(shè)計。 首先,從一般高壓二極管結(jié)構(gòu)入手,借助Silvaco-TCAD仿真軟件對二極管在反向擊穿情況下的電場分布進行仿真和理論分析,高壓雪崩二極管工作在雪崩擊穿模式時,隨雪崩擊穿電流的增加,電場分布的形式發(fā)生了改變,當(dāng)雪崩擊穿電流增加到一定值時,在陰極側(cè)nn+結(jié)處出現(xiàn)的二次電場尖峰,這是引發(fā)雙雪崩效應(yīng)并導(dǎo)致器件損壞的主要原因。通過在n-區(qū)與n+區(qū)之間引入緩沖層結(jié)構(gòu)可抑制nn+結(jié)處二次電場尖峰的出現(xiàn),提高雪崩擊穿耐量。 最后根據(jù)設(shè)計指標(biāo)對帶有緩沖層的二極管進行優(yōu)化設(shè)計。首先對非穿通結(jié)構(gòu)與穿通結(jié)構(gòu)進行阻斷參數(shù)設(shè)計,耐壓為2300V的非穿通結(jié)構(gòu)與穿通結(jié)構(gòu)二極管基區(qū)參數(shù)分別為:非穿通結(jié)構(gòu)基區(qū)摻雜濃度ND=6.1×1013cm-3,基區(qū)寬度WN=280μm;穿通結(jié)構(gòu)基區(qū)摻雜濃度ND=1.87×1013cm-3,基區(qū)厚度WN=160μm。在此結(jié)構(gòu)參數(shù)先對雪崩擊穿耐量進行了分析,單純從雪崩擊穿耐量來看,非穿通結(jié)構(gòu)更有利于雪崩耐量的提高,但考慮在高壓領(lǐng)域?qū)▔航档闹匾,選擇穿通結(jié)構(gòu)加入緩沖層進行高壓雪崩二極管的設(shè)計,均衡導(dǎo)通壓降與雪崩擊穿耐量的考慮,對緩沖層厚度與濃度進行優(yōu)化。緩沖層的參數(shù)為:緩沖層厚度d=15μm;緩沖層濃度Nbuffer=3×1014cm-3。 通過對具有緩沖層結(jié)構(gòu)的高壓雪崩二極管進行仿真分析,結(jié)論是緩沖層可以有效地降低陰極側(cè)的電場尖峰,延緩了負(fù)微分電阻的出現(xiàn),從而提高了雪崩擊穿耐量。
[Abstract]:In recent years, the application of power semiconductor devices has been expanded to various fields, and the reliability requirements of the devices are becoming more and more stringent. In high power applications, high voltage diodes, as the basic unit to maintain the stable operation of power devices, its durability is very important. In some cases, power diodes are required to work in avalanche breakdown mode, so the power diodes should have a certain avalanche dissipation energy (in this paper, avalanche breakdown tolerance). How to improve the avalanche breakdown tolerance of high voltage power diodes is a new topic in the field of power device research at home and abroad. In order to improve the avalanche breakdown tolerance of power diodes, a 2300V high voltage avalanche diode is designed in this paper. The core idea of this paper is to analyze the mechanism of avalanche damage on the basis of theoretical and simulation analysis of avalanche breakdown characteristics of high voltage avalanche diodes. And the main structure of simulation analysis and optimization design. First of all, starting with the general structure of high voltage diodes and using Silvaco-TCAD simulation software, the electric field distribution in the case of reverse breakdown is simulated and theoretically analyzed. The high voltage avalanche diode works in avalanche breakdown mode. With the increase of avalanche breakdown current, the form of electric field distribution changes. When the avalanche breakdown current increases to a certain value, the secondary electric field peak appears at the cathode side nn junction. This is the main cause of double avalanche effect and device damage. By introducing buffer layer structure between n- and n-region, the occurrence of secondary electric field spike at n _ n junction can be restrained and the breakdown tolerance of avalanche can be improved. Finally, the diode with buffer layer is optimized according to the design index. First, the blocking parameters of the non-perforated structure and the perforated structure were designed. The parameters of the diode base region of the non-perforated structure and the through-through structure with the voltage of 2300V were as follows: the doping concentration of the non-perforated structure region was 6.1 脳 1013cm-3, and the width of the base region was 280 渭 m. The doping concentration of the penetrating structure is 1.87 脳 1013cm-3 and the thickness of the base region is 160 渭 m. In this paper, the avalanche breakdown tolerance is analyzed firstly. From the viewpoint of avalanche breakdown tolerance, the non-through-through structure is more favorable to the improvement of avalanche tolerance, but the importance of conducting pressure drop in high voltage field is considered. The design of high voltage avalanche diode is carried out by adding a buffer layer to the through structure. The thickness and concentration of the buffer layer are optimized by equalizing the on-voltage drop and the avalanche breakdown tolerance. The parameters of buffer layer are as follows: buffer layer thickness is 15 渭 m, buffer layer concentration is 3 脳 1014cm-3, and buffer layer concentration is 3 脳 1014cm-3. Through the simulation analysis of high voltage avalanche diode with buffer layer structure, it is concluded that the buffer layer can effectively reduce the peak of electric field on the cathode side, delay the emergence of negative differential resistance, and improve the avalanche breakdown tolerance.
【學(xué)位授予單位】:沈陽工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN312.7
【參考文獻】
相關(guān)期刊論文 前6條
1 王彩琳,聶代祚;平面型電力半導(dǎo)體器件擊穿電壓的優(yōu)化設(shè)計[J];半導(dǎo)體技術(shù);1997年06期
2 N.Y.A.Shammas,童亦凡;外部工作條件對大功率快速二極管反向恢復(fù)特性的影響[J];變流技術(shù)與電力牽引;2000年01期
3 錢照明;盛況;;大功率半導(dǎo)體器件的發(fā)展與展望[J];大功率變流技術(shù);2010年01期
4 賈云鵬,王俊,亢寶位,張斌;高壓功率二極管中局域鉑摻雜壽命控制的研究[J];固體電子學(xué)研究與進展;2004年04期
5 周雒維;吳軍科;杜雄;楊珍貴;毛婭婕;;功率變流器的可靠性研究現(xiàn)狀及展望[J];電源學(xué)報;2013年01期
6 孫偉鋒;張波;肖勝安;蘇巍;成建兵;;功率半導(dǎo)體器件與功率集成技術(shù)的發(fā)展現(xiàn)狀及展望[J];中國科學(xué):信息科學(xué);2012年12期
本文編號:2114744
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2114744.html
最近更新
教材專著