Ka波段新型慢波系統(tǒng)理論與實驗研究
發(fā)布時間:2018-07-07 15:23
本文選題:超材料 + 脊加載曲折波導行波管 ; 參考:《電子科技大學》2017年碩士論文
【摘要】:曲折波導憑借其頻帶寬、易加工、功率容量大等特點,受到了廣泛的關(guān)注,在國防安全,科學研究,衛(wèi)星通信等方面具有廣泛的應用。慢波系統(tǒng)作為行波管中注-波互作用的核心部件,其性能水平?jīng)Q定了整個行波管的水平。但是由于傳統(tǒng)曲折波導慢波結(jié)構(gòu)的耦合阻抗較低,限制了其輸出功率的提升。為了提高曲折波導的輸出功率、增益等參數(shù),本文研究了一種Ka波段新型雙脊加載曲折波導行波管,對它的色散特性和耦合阻抗特性進行了模擬,并用三維粒子模擬軟件CST對這種新型行波管的注-波互作用過程進行了模擬分析,結(jié)果證明它的耦合阻抗比同頻帶的常規(guī)曲折波導高,同時電子效率和增益也更高。論文主要的工作如下:1.設(shè)計了 Ka波段新型雙脊曲折波導慢波結(jié)構(gòu)。描述了慢波結(jié)構(gòu)的高頻特性理論,利用HFSS高頻仿真軟件對慢波結(jié)構(gòu)進行模擬,研究了各結(jié)構(gòu)尺寸對其高頻特性的影響,將優(yōu)化后的仿真結(jié)果與常規(guī)曲折雙脊波導慢波結(jié)構(gòu)進行比較后發(fā)現(xiàn),該慢波結(jié)構(gòu)的耦合阻抗比常規(guī)曲折波導慢波結(jié)構(gòu)的高。2.設(shè)計了行波管的輸入輸出結(jié)構(gòu)和衰減器,利用HFSS高頻仿真軟件對該曲折雙脊波導慢波結(jié)構(gòu)的傳輸特性進行了仿真模擬,測得整管的電壓駐波比小于1.3,并用CST粒子工作室對其注-波互作用進行了研究,得到該新型雙脊加載曲折波導行波管在中心頻率30GHz附近處有450W的輸出功率,增益也達到40.7dB,在29~31GHz頻段內(nèi)輸出功率達400W以上,電子效率大于10%。3.Ka波段新型雙脊加載曲折波導的實驗研究,用UG軟件對輸入輸出結(jié)構(gòu)、慢波線和衰減器進行了制圖,并組裝測試,實驗測得的數(shù)據(jù)和軟件模擬結(jié)果比較吻合。4.設(shè)計了一種加載了超材料的Ka波段新型雙脊加載曲折波導慢波結(jié)構(gòu),用HFSS高頻仿真軟件對其高頻特性進行了仿真模擬,并與常規(guī)曲折波導進行了對比,發(fā)現(xiàn)加載了超材料的Ka波段新型雙脊加載曲折波導慢波結(jié)構(gòu)的尺寸比未加入超材料的普通曲折波導大1.2倍,然后用ORION軟件對新結(jié)構(gòu)進行了互作用的模擬,仿真結(jié)果表明:整管增益大于37dB,輸出功率大于410W,為后面的設(shè)計提供的可靠依據(jù)。
[Abstract]:The zigzag waveguide is widely used in national defense security, scientific research, satellite communication and so on, because of its characteristics such as frequency bandwidth, easy processing, large power capacity and so on. As the core component of beam-wave interaction in TWT, the performance level of slow wave system determines the level of TWT. However, because of the low coupling impedance of the traditional slow wave structure, the output power is limited. In order to improve the output power and gain of the zigzag waveguide, a novel Ka-band double-ridged waveguide traveling wave tube is studied in this paper, and its dispersion and coupling impedance characteristics are simulated. Three dimensional particle simulation software CST is used to simulate the beam-wave interaction process of the new TWT. The results show that the coupling impedance is higher than the conventional zigzag waveguide in the same frequency band, and the electron efficiency and gain are also higher. The main work of this paper is as follows: 1: 1. A new type of slow wave structure with double ridges and zigzag waveguides in Ka band is designed. This paper describes the theory of high frequency characteristic of slow wave structure, simulates the structure of slow wave by HFSS high frequency simulation software, and studies the influence of structure size on its high frequency characteristic. By comparing the optimized simulation results with the conventional twisting double-ridge waveguide slow wave structure, it is found that the coupling impedance of the slow wave structure is higher than that of the conventional zigzag waveguide slow wave structure. The input-output structure and attenuator of the TWT are designed. The propagation characteristics of the slow wave structure of the twisting double-ridge waveguide are simulated by HFSS high-frequency simulation software. The voltage standing wave ratio of the whole tube is less than 1.3. The beam-wave interaction is studied by CST particle studio. The output power of the new double-ridged waveguide traveling wave tube is 450 W at the center frequency of 30GHz. The gain is also up to 40.7 dB, the output power is more than 400W in the frequency band of 29g / 31GHz, and the electron efficiency is greater than 10.3.The experimental study of the new double-ridge loaded zigzag waveguide is carried out. The input and output structure, the slow wave line and the attenuator are plotted with UG software. And assembly test, the data measured by the experiment and software simulation results are in good agreement with. 4. A novel Ka-band double-ridge loaded slow wave waveguide with supermaterial is designed. The high frequency characteristics of the waveguide are simulated by HFSS software, and compared with the conventional zigzag waveguide. It is found that the size of a new Ka-band double-ridge loaded waveguide slow-wave structure is 1.2 times larger than that of the ordinary zigzag waveguide without supermaterial, and then the interaction of the new structure is simulated with ORION software. The simulation results show that the gain of the whole tube is greater than 37 dB and the output power is more than 410 W, which provides a reliable basis for the later design.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN124
【參考文獻】
相關(guān)期刊論文 前6條
1 王娟;吳剛;楊明華;蘇小剛;;大功率毫米波行波管發(fā)展現(xiàn)狀[J];真空電子技術(shù);2010年03期
2 馮進軍;胡銀富;蔡軍;鄔顯平;唐燁;;W波段行波管發(fā)展評述[J];真空電子技術(shù);2010年02期
3 丁耀根;;大功率微波電真空器件的發(fā)展動向[J];真空電子技術(shù);2006年03期
4 鄔顯平;世紀之交的微波真空器件[J];真空電子技術(shù);2003年01期
5 王文祥,宮玉彬,魏彥玉,余國芬,趙國慶;大功率行波管新型慢波線技術(shù)的進展[J];真空電子技術(shù);2002年06期
6 劉順康,周彩玉,包正強;折疊波導慢波電路的傳輸特性[J];真空電子技術(shù);2002年04期
相關(guān)博士學位論文 前2條
1 何俊;毫米波新型曲折波導行波管的研究[D];電子科技大學;2010年
2 張輝;超常介質(zhì)的電磁特性及其應用研究[D];國防科學技術(shù)大學;2009年
,本文編號:2105382
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2105382.html
最近更新
教材專著