GaN基異質(zhì)結(jié)構(gòu)及HEMT器件制備研究
本文選題:氮化鎵 + 異質(zhì)結(jié) ; 參考:《西安郵電大學(xué)》2017年碩士論文
【摘要】:因?yàn)榈?GaN)基材料禁帶寬度大、電子飽和漂移速度高、耐高壓、抗輻照、容易形成異質(zhì)結(jié)構(gòu)、具有大的自發(fā)和壓電極化產(chǎn)生的高二維電子氣(2DEG)濃度,故特別適合制備新一代高頻大功率電子器件和高速低耗損電力電子器件,在軍用和民用領(lǐng)域具有極為廣闊的應(yīng)用前景,是當(dāng)今世界上半導(dǎo)體領(lǐng)域的研究熱點(diǎn)。本論文重點(diǎn)圍繞GaN基異質(zhì)結(jié)構(gòu)和高電子遷移率晶體管(HEMT)器件存在的部分問題,開展了 N面極性GaN/AlxGa1-xN/GaN異質(zhì)結(jié)構(gòu)的理論研究,鐵(Fe)摻雜高阻GaN材料和GaN基HEMT結(jié)構(gòu)材料的金屬有機(jī)物化學(xué)氣相沉積(MOCVD)生長研究,以及GaN基HEMT器件的制備及電流崩塌研究。所取得的主要研究結(jié)果如下:1.首次系統(tǒng)研究了 N面極性GaN/AllxGa1-xN/GaN異質(zhì)結(jié)構(gòu)中2DEG和二維空穴氣(2DHG)濃度隨結(jié)構(gòu)參數(shù)的變化規(guī)律,為新型N面極性GaN/AlxGa1-xN/GaN HEMT器件的設(shè)計(jì)和分析提供了有重要參考價(jià)值的理論指導(dǎo)。通過薛定諤方程和泊松方程的自洽求解,系統(tǒng)研究了 N面極性GaN/AlxGa1-xN/GaN異質(zhì)結(jié)構(gòu)中2DEG和2DHG濃度隨GaN帽層厚度、AlGaN背勢(shì)壘層厚度和鋁(Al)組分x、AlGaN背勢(shì)壘層和下GaN層中n型摻雜濃度的變化規(guī)律。對(duì)于非故意摻雜的N面極性GaN/AllxGai-xN/GaN異質(zhì)結(jié)構(gòu),研究發(fā)現(xiàn):隨GaN帽層厚度的增加,上界面處的2DEG濃度從無到有,逐漸增加;下界面處的2DHG濃度略微下降,直到趨于飽和。隨著AlxGa1-xN背勢(shì)壘層厚度的增加,上界面處的2DEG和下界面處的2DHG濃度均增加。隨著AlxGai-xN背勢(shì)壘層中Al組分x的增加,上界面處的2DEG和下界面處的2DHG濃度均增加。對(duì)于AlxGa1-xN背勢(shì)壘層和下GaN層中故意摻入n型雜質(zhì)的N面極性GaN/AlxGa1-xN/GaN異質(zhì)結(jié)構(gòu),研究發(fā)現(xiàn):對(duì)AlxGa1-xN背勢(shì)壘層進(jìn)行n型摻雜,可形成只在上界面處存在2DEG,在下界面處不存在2DHG的異質(zhì)結(jié)構(gòu),而且,上界面處的2DEG濃度隨AlxGai-xN背勢(shì)壘層中n型摻雜濃度的增加而增加。對(duì)下GaN層進(jìn)行n型δ摻雜,隨著摻雜濃度的增加,下界面處的2DHG濃度會(huì)逐漸減少直至消失;存在一個(gè)上界面處既沒有2DEG、下界面處也沒有2DHG的摻雜濃度范圍;進(jìn)一步增加下GaN層n型δ摻雜的濃度,上界面處的2DEG濃度會(huì)隨著δ摻雜濃度的增加而迅速增加。揭示了 N面極性GaN/AlxGa1-xN/GaN異質(zhì)結(jié)構(gòu)中上界面處2DEG的四種可能起源。2.研究了鐵(Fe)調(diào)制摻雜和非故意摻雜GaN高阻緩沖層對(duì)HEMT器件性能的影響,發(fā)現(xiàn)Fe調(diào)制摻雜高阻GaN緩沖層HEMT器件具有更好的可靠性。利用MOCVD技術(shù),生長了具有不同F(xiàn)e摻雜濃度的GaN緩沖層,研究了 Fe摻雜濃度對(duì)GaN緩沖層電阻率、表面形貌和晶體質(zhì)量的影響。分別通過Fe調(diào)制摻雜和非故意摻雜方式,在4英寸藍(lán)寶石襯底上研制出了表面形貌好、電阻率高達(dá)107Ω·cm的高阻GaN緩沖層外延材料,并以此為基礎(chǔ)研制了 GaN/AlxGa1xN/AlN/GaN HEMT結(jié)構(gòu)材料。Fe調(diào)制摻雜高阻GaN緩沖層HEMT結(jié)構(gòu)材料(樣品A)的平均方塊電阻為348 Ω/sq,2DEG遷移率為2503 cm2/V·s;非故意摻雜高阻GaN緩沖層HEMT結(jié)構(gòu)材料(樣品B)的平均方塊電阻為373 Ω/sq,2DEG遷移率為1926 cm2/V·s。用樣品A和樣品B分別研制出了 HEMT器件,其柵長3 μm、柵寬100μm、柵源間距5 μm、柵漏間距20 μm。在脈沖模式下,測(cè)量了柵極電壓為2 V時(shí),器件的轉(zhuǎn)移特性和柵極漏電流特性,結(jié)果表明,Fe調(diào)制摻雜高阻GaN緩沖層HEMT具有更高的最大飽和電流密度(395 mA/mm)和更小的柵極漏電流(3.32×10-7A)。另外,在不同柵極電壓應(yīng)力和漏極電壓應(yīng)力作用下,測(cè)量了器件的直流輸出特性以及轉(zhuǎn)移特性,結(jié)果表明,Fe調(diào)制摻雜高阻GaN緩沖層HEMT在柵壓關(guān)斷應(yīng)力下具有更好的可靠性。3.首次提出了源柵雙場(chǎng)板GaN/In0.17Al0.83N/AlN/GaNHEMT器件結(jié)構(gòu)。研究了不同偏壓應(yīng)力對(duì)無場(chǎng)板、柵場(chǎng)板和源柵雙場(chǎng)板GaN/In0.17Al0.83N/AlN/GaNHEMT器件漏極輸出電流的影響。結(jié)果表明源柵雙場(chǎng)板HEMT器件可有效抑制與偏壓應(yīng)力相關(guān)的電流崩塌現(xiàn)象。利用MOCVD技術(shù),在2英寸藍(lán)寶石襯底上研制了 GaN/In0.17Al0.83N/AlN/GaN HEMT結(jié)構(gòu)材料,其室溫2DEG濃度和遷移率分別為2.432×1013 cm-2和850 cm2/V·s,方塊電阻為302 Ω/sq。為了研究不同場(chǎng)板結(jié)構(gòu)對(duì)器件漏極電流退化的影響,用上述材料分別研制了無場(chǎng)板(器件A)、只有柵場(chǎng)板(器件B)和具有源柵雙場(chǎng)板(器件C)的HEMT器件,并對(duì)器件在施加偏壓應(yīng)力前、施加關(guān)態(tài)和開態(tài)應(yīng)力后的直流特性進(jìn)行了測(cè)試。發(fā)現(xiàn)源柵雙場(chǎng)板結(jié)構(gòu)可有效降低GaN/In0.17Al0.83N/AlN/GaN HEMT器件的漏極電流退化。在關(guān)態(tài)應(yīng)力條件下,測(cè)量了上述三種器件在柵壓為2 V時(shí)的直流輸出特性曲線,結(jié)果表明源柵雙場(chǎng)板器件的漏極電流降低率為3.32%,小于柵場(chǎng)板器件的7.57%和無場(chǎng)板器件的14.63%。三種器件在漏源電壓為10 V時(shí)的轉(zhuǎn)移特性曲線測(cè)試結(jié)果表明,在關(guān)態(tài)應(yīng)力下,器件A的閾值電壓向正電壓方向移動(dòng),器件B和C的閾值電壓無明顯變化;在開態(tài)應(yīng)力條件下,器件A的飽和漏極電流和峰值跨導(dǎo)的減小最為明顯,器件B次之,器件C最小。實(shí)驗(yàn)結(jié)果表明,源柵雙場(chǎng)板對(duì)抑制器件的電流崩塌效應(yīng)最為有效。
[Abstract]:Since gallium nitride (GaN) based materials have large band gap, high electron saturation drift speed, high pressure resistance and radiation resistance, it is easy to form heterostructures, with high two-dimensional electron gas (2DEG) concentration produced by large spontaneous and piezoelectric polarization, so it is especially suitable for the preparation of new generation high frequency power devices and high speed and low consumption power electronic devices. The civil field has a very wide application prospect. It is a hot topic in the field of semiconductors in the world. This paper focuses on the problems of GaN based heterostructures and high electron mobility transistor (HEMT) devices, and has carried out a theoretical study of N surface polarity GaN/AlxGa1-xN/GaN heterostructures. Iron (Fe) doped high resistance GaN materials and GaN The study on the growth of metal organic chemical vapor deposition (MOCVD), the preparation of GaN based HEMT devices and the current collapse study of GaN based HEMT devices. The main results obtained are as follows: 1. the changes of the concentration of 2DEG and two-dimensional air (2DHG) in the N surface polar GaN/AllxGa1-xN/GaN heterostructure with the structural parameters were studied for the first time. The theoretical guidance for the design and analysis of a new N surface polar GaN/AlxGa1-xN/GaN HEMT device is provided. Through the self consistent solution of the Schrodinger equation and Poisson equation, the 2DEG and 2DHG concentrations in N surface polar GaN/AlxGa1-xN/GaN heterostructures are studied with GaN cap thickness, AlGaN back barrier thickness and X of Al (Al) components. The variation of N type doping concentration in the lGaN back barrier layer and the lower GaN layer. For the unintentionally doped N surface polar GaN/AllxGai-xN/GaN heterostructure, it is found that the concentration of 2DEG at the upper interface increases gradually with the increase of the thickness of the GaN cap, and the concentration of 2DHG at the lower interface decreases slightly until it tends to saturation. With the AlxGa1-xN back potential With the increase of the thickness of the barrier layer, the concentration of 2DHG at the 2DEG and the lower interface at the upper interface increases. With the increase of Al component X in the AlxGai-xN back barrier layer, the 2DEG and the 2DHG concentration at the lower interface are all increased. For the AlxGa1-xN back barrier layer and the lower GaN layer, the N surface polar GaN/AlxGa1-xN/GaN heterostructure, which is deliberately doped with N type impurities, is studied. It is found that N type doping on the AlxGa1-xN back barrier layer can form 2DEG only at the upper interface, and there is no 2DHG heterostructure at the lower interface. Moreover, the 2DEG concentration at the upper interface increases with the increase of N type doping concentration in the AlxGai-xN back barrier layer. The N type delta doping on the lower GaN layer is 2, with the increase of doping concentration, 2 at the lower interface. The concentration of DHG will gradually decrease and disappear; there is no 2DEG and no 2DHG doping concentration at the upper interface, and the concentration of N delta doping at the lower GaN layer is further increased. The concentration of 2DEG at the upper interface will increase rapidly with the increase of the delta doping concentration. The upper boundary of the N surface polar GaN/AlxGa1-xN/GaN heterostructure is revealed. Four possible origins of 2DEG at the surface.2. studied the effect of iron (Fe) modulation doping and unintentionally doped GaN high resistance buffer layer on the performance of HEMT devices. It was found that Fe modulation doped high resistance GaN buffer layer HEMT device had better reliability. The GaN buffer layer with different Fe doping concentration was grown by MOCVD technology. The influence of the resistivity, surface morphology and crystal quality of the buffer layer. By Fe modulation doping and unintentional doping, a high resistance GaN buffer layer epitaxial material with good surface morphology and a resistivity of 107 Omega cm was developed on the 4 inch sapphire substrate. On this basis, the.Fe modulation mixing of the GaN/AlxGa1xN/AlN/GaN HEMT structure material was developed. The average block resistance of the hybrid high resistance GaN buffer layer HEMT structure material (sample A) is 348 Omega /sq and the 2DEG mobility is 2503 cm2/V. S; the average block resistance of the unintentionally doped high resistance GaN buffer layer HEMT structure material (sample B) is 373 Omega /sq, the 2DEG mobility is 1926. The gate width is 100 mu m, the distance between the gate source is 5 mu and the gate leakage distance is 20 mu m.. Under the pulse mode, the transfer characteristics and gate leakage current characteristics of the device are measured when the gate voltage is 2 V. The results show that the Fe modulation doped high resistance GaN buffer layer HEMT has a higher maximum saturation current density (395 mA/ mm) and a smaller gate leakage current (3.32 x 10-7A). Under the action of the grid voltage stress and the leakage voltage stress, the DC output characteristics and the transfer characteristics of the device are measured. The results show that the Fe modulation doped high resistance GaN buffer layer HEMT has better reliability under the gate pressure off stress..3. first proposed the structure of the source gate double field plate GaN/ In0.17Al0.83N/AlN/GaNHEMT device. The effect of compressive stress on the leakage current of the field plate, gate field plate and source gate double field plate GaN/In0.17Al0.83N/AlN/GaNHEMT device. The results show that the source grid dual field plate HEMT device can effectively suppress the current collapse associated with the bias stress. The GaN/In0.17Al0.83N/AlN/GaN HEMT structure has been developed on 2 inch sapphire substrate by MOCVD technology. The 2DEG concentration and mobility of the material at room temperature are 2.432 x 1013 cm-2 and 850 cm2/V. S respectively, and the block resistance is 302 Omega /sq.. In order to study the effect of different field plate structures on the depolarization of the leakage current of the device, the field plate (device A) is developed with the above materials, only the gate field plate (device B) and the HEMT device with the source gate double field plate (device C) are used. The DC characteristics of the device are tested before applying the bias stress and the closed state and open state stresses are tested. It is found that the source gate double field plate structure can effectively reduce the depolarization of the leakage current of GaN/In0.17Al0.83N/AlN/GaN HEMT device. The output characteristic curve of the three devices under the gate pressure of 2 V is measured under the closed state stress. The leakage current reduction rate of the gate dual field plate device is 3.32%. The test results of the transfer characteristic curves of three kinds of 14.63%. devices less than the gate field plate devices and the 7.57% field free plate devices at the leakage source voltage of 10 V show that the threshold voltage of the device A moves towards the positive voltage side under the closed state stress, and the threshold voltage of the device B and C has no obvious change. Under the open state stress condition, the saturation leakage current and the peak transconductance of the device A are the most obvious, the device is B and the device C is the smallest. The experimental results show that the source grid double field plate is most effective for the current collapse effect of the suppression device.
【學(xué)位授予單位】:西安郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN386
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭廣富;異質(zhì)結(jié)[J];物理;1983年05期
2 鄭茳,許居衍;硅異質(zhì)結(jié)和贗異質(zhì)結(jié)雙極器件研究進(jìn)展[J];電子學(xué)報(bào);1995年10期
3 鄭宜鈞;硅基異質(zhì)結(jié)構(gòu)的研究[J];電子科技導(dǎo)報(bào);1996年09期
4 范希武;與Ⅱ—Ⅵ族有關(guān)的異質(zhì)結(jié)的場(chǎng)致發(fā)光[J];國外信息顯示;1973年Z1期
5 單淑萍;蔡麗清;;異質(zhì)結(jié)領(lǐng)域發(fā)展近況[J];科教文匯(上旬刊);2009年12期
6 M .Jedlicka;F.Schauer;林鈞天;;攝象管用異質(zhì)結(jié)構(gòu)靶的物理模型[J];光電子學(xué)技術(shù);1987年03期
7 鄭東;;幾種微波毫米波固態(tài)器件的動(dòng)向[J];電波科學(xué)學(xué)報(bào);1991年Z1期
8 王華,于軍,董小敏,王耘波,周文利,趙建洪,周東祥;Au/PZT/BIT/p-Si異質(zhì)結(jié)的制備與性能研究[J];物理學(xué)報(bào);2001年05期
9 李玉蘭;;Ga-Al-As激光器的進(jìn)展[J];稀有金屬;1978年01期
10 詹儀;張會(huì)云;尚廷義;張玉萍;鄭義;;異質(zhì)結(jié)構(gòu)對(duì)多通道濾波器禁帶的展寬(英文)[J];量子光學(xué)學(xué)報(bào);2006年01期
相關(guān)會(huì)議論文 前10條
1 張闖;閆永麗;趙永生;姚建年;;一維有機(jī)異質(zhì)結(jié)構(gòu)的制備和發(fā)光性質(zhì)調(diào)控[A];中國化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第4分會(huì)場(chǎng)摘要集[C];2012年
2 楊金虎;彭成信;左元慧;祖連海;秦瑤;;納米復(fù)合/異質(zhì)結(jié)構(gòu)設(shè)計(jì)及其能量存儲(chǔ)與轉(zhuǎn)化研究[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第37分會(huì):能源納米科學(xué)與技術(shù)[C];2014年
3 鄧新華;劉念華;袁吉仁;;一維單負(fù)材料光子晶體異質(zhì)結(jié)構(gòu)的隧穿模[A];2007年全國博士生學(xué)術(shù)論壇(材料科學(xué)與工程學(xué)科)論文集[C];2007年
4 薛飛;孟子暉;齊豐蓮;王豐彥;薛敏;;二維膠體晶體異質(zhì)結(jié)構(gòu)[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第33分會(huì):納米材料合成與組裝[C];2014年
5 秦瑤;祖連海;周燕潔;楊金虎;;準(zhǔn)單晶介孔ZnO-Au異質(zhì)結(jié)構(gòu)的一步法合成及傳感應(yīng)用[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第04分會(huì):納米生物傳感新方法[C];2014年
6 鐘明亞;王爽;單桂曄;王國瑞;劉益春;;超聲法制備ZnO/Au納米異質(zhì)結(jié)構(gòu)及其光學(xué)性質(zhì)的研究[A];第11屆全國發(fā)光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2007年
7 李忠輝;李亮;董遜;張嵐;姜文海;;3英寸Si基AlGaN/GaN/異質(zhì)結(jié)材料生長[A];第十一屆全國MOCVD學(xué)術(shù)會(huì)議論文集[C];2010年
8 張波;叢琴;賀笑春;高明軍;馬興法;李光;;低維異質(zhì)結(jié)構(gòu)功能材料及其有機(jī)-無機(jī)納米復(fù)合材料的表面、界面特性研究[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第01分會(huì):表面物理化學(xué)[C];2014年
9 劉江濤;周云松;王福合;顧本源;;對(duì)稱性對(duì)2D光子晶體異質(zhì)結(jié)導(dǎo)波模的影響[A];大珩先生九十華誕文集暨中國光學(xué)學(xué)會(huì)2004年學(xué)術(shù)大會(huì)論文集[C];2004年
10 王海波;閆東航;;結(jié)晶性有機(jī)異質(zhì)結(jié)器件[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊(cè))[C];2009年
相關(guān)博士學(xué)位論文 前10條
1 甄延忠;Mo-O基半導(dǎo)體材料優(yōu)化制備及光催化氧化脫硫性能的研究[D];西北大學(xué);2015年
2 劉爾富;二維材料及其異質(zhì)結(jié)構(gòu)的電子輸運(yùn)與器件研究[D];南京大學(xué);2015年
3 朱國興;基于氧族化合物納米復(fù)合結(jié)構(gòu)的構(gòu)筑、機(jī)理及性能研究[D];南京大學(xué);2010年
4 鄒欣偉;Cu_2O基納米異質(zhì)結(jié)的制備及光催化、光電和氣敏性能[D];西北工業(yè)大學(xué);2015年
5 石遂興;Ⅲ-Ⅴ族窄帶隙半導(dǎo)體納米線及納米線異質(zhì)結(jié)的生長與物性研究[D];中國科學(xué)院研究生院(上海技術(shù)物理研究所);2015年
6 趙洋;InN薄膜的MBE法生長及其NiO組合異質(zhì)結(jié)器件研究[D];吉林大學(xué);2016年
7 王鵬;Ⅱ-Ⅵ族化合物/TiO_2納米棒異質(zhì)結(jié)構(gòu)的制備及其光電化學(xué)性質(zhì)的研究[D];吉林大學(xué);2016年
8 宋昌盛;納米異質(zhì)結(jié)電子結(jié)構(gòu)特性的第一性原理研究[D];華東師范大學(xué);2016年
9 沈玄;多鐵性鈣鈦礦異質(zhì)結(jié)構(gòu)的電磁性能和電子顯微研究[D];南京大學(xué);2016年
10 杜虹;Cd_(1-x)Zn_xS基納米異質(zhì)結(jié)光催化劑的合成及其制氫性能研究[D];中國科學(xué)技術(shù)大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 王雅文;近紫外寬帶激發(fā)LED用熒光材料的研究[D];上海師范大學(xué);2015年
2 范志強(qiáng);GaN/Si-NPA雙納米異質(zhì)結(jié)的制備及其電學(xué)特性研究[D];鄭州大學(xué);2015年
3 周璇;g-C_3N_4/Bi_2S_3和Ag@C異質(zhì)結(jié)構(gòu)的合成及應(yīng)用[D];蘇州大學(xué);2015年
4 楊薇;FeVO_4異質(zhì)結(jié)光催化劑的制備改性及光電性能的研究[D];陜西科技大學(xué);2015年
5 李文婷;部分鉍系光催化劑的改性、表征以及光催化性能研究[D];福建師范大學(xué);2015年
6 徐丹丹;多級(jí)異質(zhì)結(jié)構(gòu)MOFs材料的控制生長及性能研究[D];福建師范大學(xué);2015年
7 袁建;二維Bi_2Te_(3-x)Se_x及其與石墨烯的異質(zhì)結(jié)材料制備與表征[D];蘇州大學(xué);2015年
8 趙飛;一維銦基化合物異質(zhì)結(jié)構(gòu)納米材料的靜電紡絲合成及光催化性質(zhì)研究[D];齊魯工業(yè)大學(xué);2015年
9 張永輝;BiOX(I、Br、Cl)的合成、表征與改性[D];齊魯工業(yè)大學(xué);2015年
10 孫琦;功能化magadiite基異質(zhì)結(jié)構(gòu)的制備及性能研究[D];北京化工大學(xué);2015年
,本文編號(hào):2017209
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2017209.html