基于FinFET SRAM單粒子效應(yīng)仿真研究
本文選題:FinFET + 單粒子翻轉(zhuǎn)效應(yīng)。 參考:《西安電子科技大學(xué)》2015年碩士論文
【摘要】:隨著國(guó)防軍事的迅速發(fā)展,IC芯片因輻射效應(yīng)導(dǎo)致的問(wèn)題也越來(lái)越嚴(yán)重,電子元器件及芯片系統(tǒng)在輻射環(huán)境下可靠性研究變得更加重要,從未來(lái)發(fā)展來(lái)看,抗輻射效應(yīng)加固的問(wèn)題可能成為影響整個(gè)半導(dǎo)體行業(yè)發(fā)展一個(gè)重要因素,對(duì)抗輻射問(wèn)題的研究對(duì)半導(dǎo)體技術(shù)產(chǎn)生深刻影響。比如,當(dāng)一個(gè)新型元器件研制出來(lái)后首先就要對(duì)它進(jìn)行輻射可靠性測(cè)試,對(duì)芯片系統(tǒng)設(shè)計(jì)的過(guò)程當(dāng)中提高它的抗輻射能力一直是此過(guò)程當(dāng)中重要目標(biāo)。因?yàn)樵趯?shí)驗(yàn)室中存在各種局限難以開展空間輻射效應(yīng)的實(shí)驗(yàn),所以對(duì)輻射效應(yīng)進(jìn)行模擬仿真變得很重要,仿真所得數(shù)據(jù)結(jié)論也可以對(duì)電子元器件或芯片系統(tǒng)設(shè)計(jì)提供一定參考。本文從介紹各種輻射效應(yīng)環(huán)境角度出發(fā),重點(diǎn)分析了單粒子輻射效應(yīng)對(duì)FinFET新型器件的影響,通過(guò)對(duì)FinFET的單粒子效應(yīng)的仿真分析得到了下面三個(gè)方面的研究成果:1、介紹了FinFET新型器件的工作原理及其優(yōu)勢(shì),并利用Sentaurus TCAD軟件建立了它的三維結(jié)構(gòu)模型,基于重粒子轟擊理論模型模擬了不同能量的重粒子轟擊FinFET器件漏極而產(chǎn)生的單粒子效應(yīng),研究結(jié)果表明,當(dāng)FinFET漏區(qū)受到重粒子轟擊時(shí),由于重粒子在穿透路徑上沉積能量而產(chǎn)生電子空穴對(duì),并在外電場(chǎng)的作用下分離,從而產(chǎn)生一個(gè)漏極脈沖電流,這個(gè)電流跟經(jīng)典雙指數(shù)脈沖電流一致,隨粒子的LET值增加而變大。2、通過(guò)對(duì)比分析得知:體硅FinFET由于比平面MOSFET的敏感體積小因此它的抗單粒子翻轉(zhuǎn)效應(yīng)能力強(qiáng);針對(duì)SOI和體硅兩種不同結(jié)構(gòu)的FinFET,SOI結(jié)構(gòu)存在埋氧層隔離使得襯底里面產(chǎn)生的電荷不能被漏端收集,因而SOI結(jié)構(gòu)比體硅結(jié)構(gòu)抗輻射能力好;可以通過(guò)適當(dāng)提高源端電壓減弱寄生雙極放大效應(yīng)和降低鰭的高度來(lái)縮短單粒子在硅體中的徑跡路徑來(lái)提高抗輻射能力。由這些對(duì)比分析得知寄生雙極晶體管對(duì)漏端脈沖電流的貢獻(xiàn)不如忽視,用寄生雙極放大因子α來(lái)衡量貢獻(xiàn)大小,通過(guò)計(jì)算發(fā)現(xiàn)α隨鰭高增加而非線性增加,提高源端電壓α值變小,SOI結(jié)構(gòu)的α值比體硅結(jié)構(gòu)大。3、使用Hspice仿真軟件對(duì)基于FinFET結(jié)構(gòu)SRAM電路進(jìn)行抗單粒子翻轉(zhuǎn)效應(yīng)的加固設(shè)計(jì),首先簡(jiǎn)要介紹了BSIM-CMG庫(kù)模型,這個(gè)spice模型庫(kù)是標(biāo)準(zhǔn)FinFET模型;接著基于提高源端電壓可減弱寄生雙極放大效應(yīng)的理論基礎(chǔ)上提出了五種不同的SRAM存儲(chǔ)單元;最后對(duì)比分析了類型A和類型E的抗單粒子翻轉(zhuǎn)的能力以及這五種SRAM單元的靜態(tài)噪聲裕度、讀噪聲裕度和寫噪聲裕度,為設(shè)計(jì)具有抗單粒子翻轉(zhuǎn)能力的SRAM單元提供了一定依據(jù)。
[Abstract]:With the rapid development of national defense and military, the problem of IC chip caused by radiation effect is becoming more and more serious. The research of reliability of electronic components and chip system in radiation environment becomes more and more important. The problem of anti-radiation effect reinforcement may become an important factor affecting the development of semiconductor industry, and the study of radiation resistance has a profound impact on semiconductor technology. For example, when a new type of component is developed, it is necessary to test its radiation reliability first, and it is an important goal to improve its anti-radiation ability in the process of chip system design. Because there are various limitations in the laboratory, it is difficult to carry out the experiment of space radiation effect, so it is very important to simulate and simulate the radiation effect. The conclusion of the simulation data can also provide some reference for the design of electronic component or chip system. In this paper, from the point of view of introducing various radiation effects, the influence of single particle radiation effect on FinFET novel devices is analyzed. Through the simulation analysis of single particle effect of FinFET, the following three aspects of research result: 1 are obtained. The principle and advantages of FinFET new device are introduced, and the three-dimensional structure model of FinFET is established by using Saurus TCAD software. Based on the theoretical model of heavy particle bombardment, the single particle effect caused by heavy particle bombarding FinFET devices with different energies is simulated. The results show that, when the FinFET leakage region is bombarded by heavy particles, Due to the deposition of energy on the penetration path by heavy particles, an electron hole pair is produced and separated by an external electric field, which generates a drain pulse current, which is consistent with the classical double exponential pulse current. With the increase of let value of particles, it becomes larger. 2. Through comparative analysis, it is found that bulk silicon FinFET has stronger anti-single particle flip effect because of its smaller sensitive volume than planar MOSFET. For the two different structures of SOI and bulk silicon, the buried oxygen layer exists in the SOI structure, so the charge generated in the substrate can not be collected by the drain end, so the SOI structure has better radiation resistance than the bulk silicon structure. The anti-radiation ability can be improved by properly increasing the source terminal voltage to reduce the parasitic bipolar amplification effect and to reduce the height of the fin to shorten the track path of single particle in the silicon body. It is found that the contribution of parasitic bipolar transistors to the leakage pulse current is not as good as that of the parasitic bipolar transistors. The contribution is measured by the parasitic bipolar amplification factor 偽. It is found by calculation that 偽 increases nonlinear with the increase of fin height. The 偽 value of SOI structure is larger than that of bulk silicon structure by increasing the source voltage. The SRAM circuit based on FinFET structure is strengthened with HSPICE simulation software. Firstly, the BSIM-CMG library model is introduced briefly. The spice model base is a standard FinFET model, and then five different memory cells are proposed based on the theory that increasing the source voltage can reduce the parasitic bipolar amplification effect. Finally, the ability of type A and type E to resist single particle flipping and the static noise margin, read noise margin and write noise margin of the five SRAM cells are compared and analyzed, which provides a basis for the design of SRAM cells with the ability to resist single particle flipping.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN386
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 王步冉;夏克強(qiáng);;SRAM的SEU效應(yīng)及加固技術(shù)三維數(shù)值模擬[J];質(zhì)量與可靠性;2012年03期
2 ;3-D TCAD simulation study of the single event effect on 25 nm raised source-drain FinFET[J];Science China(Technological Sciences);2012年06期
3 ;Research on single event transient pulse quenching effect in 90 nm CMOS technology[J];Science China(Technological Sciences);2011年11期
4 賀朝會(huì),李國(guó)政,羅晉生,劉恩科;CMOS SRAM單粒子翻轉(zhuǎn)效應(yīng)的解析分析[J];半導(dǎo)體學(xué)報(bào);2000年02期
5 王麗君;空間電子學(xué)的單粒子效應(yīng)[J];空間電子技術(shù);1998年04期
6 王長(zhǎng)河;單粒子效應(yīng)對(duì)衛(wèi)星空間運(yùn)行可靠性影響[J];半導(dǎo)體情報(bào);1998年01期
,本文編號(hào):2005376
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/2005376.html