泵輔助兩相散熱系統(tǒng)的設(shè)計(jì)與實(shí)驗(yàn)研究
本文選題:兩相散熱系統(tǒng) + 矩形槽道。 參考:《重慶大學(xué)》2015年碩士論文
【摘要】:隨著電子元器件及高功率芯片大規(guī)模集成化的發(fā)展,元器件上的熱損耗得到進(jìn)一步增大,導(dǎo)致其當(dāng)量熱流密度得到顯著增加,使其采用傳統(tǒng)的風(fēng)冷或水冷散熱方案已經(jīng)不能滿(mǎn)足其散熱要求,探尋一種新型的散熱解決方案已成為功率電子元器件熱管理解決方案的發(fā)展趨勢(shì)。本文針對(duì)工程實(shí)踐中高熱流密度離散熱源熱管理解決方案的特點(diǎn)及現(xiàn)實(shí)需求,提出了采用小槽道內(nèi)相變換熱的散熱解決方案,設(shè)計(jì)并搭建了泵輔助相變換熱系統(tǒng),采用循環(huán)泵來(lái)驅(qū)動(dòng)高溫制冷劑R114來(lái)解決離散式、高功率電子元器件的散熱問(wèn)題。本文介紹了兩相散熱實(shí)驗(yàn)系統(tǒng)相對(duì)于常規(guī)蒸汽壓縮式制冷系統(tǒng)所具有的優(yōu)勢(shì),并詳細(xì)地描述了該實(shí)驗(yàn)系統(tǒng)的工作原理,即:在儲(chǔ)液罐中具有一定過(guò)冷度的制冷劑R114,在定容積齒輪泵的驅(qū)動(dòng)下,進(jìn)入蒸發(fā)器對(duì)電子元器件進(jìn)行冷卻,使得部分制冷劑發(fā)生相變,成為具有一定干度的汽液兩相混合物,并在壓差的驅(qū)動(dòng)下進(jìn)入冷凝器進(jìn)行冷卻,使其冷凝成為具有一定過(guò)冷度的制冷劑液體,重新流回制冷劑儲(chǔ)液罐,從而完成兩相散熱系統(tǒng)的一次循環(huán)。在此基礎(chǔ)上,本文設(shè)計(jì)并選購(gòu)組成兩相散熱實(shí)驗(yàn)系統(tǒng)所需的齒輪泵、蒸發(fā)器和冷凝器三大部件,并詳細(xì)地討論了其選型的限制條件和參考因素。齒輪泵選取流量均勻、恒定,沒(méi)有脈動(dòng)現(xiàn)象的磁力驅(qū)動(dòng)齒輪泵;冷凝器選用臥式管殼式水冷冷凝器;蒸發(fā)器以鋁合金為材料采用微銑切割方式,設(shè)計(jì)并加工出26條1mm×3mm的矩形槽道群。通過(guò)對(duì)該兩相散熱系統(tǒng)的實(shí)驗(yàn)研究和分析,可得出如下結(jié)論:①在阻力特性方面,在單相流動(dòng)時(shí),矩形槽道的摩擦阻力和雷諾數(shù)間近似呈線(xiàn)性關(guān)系,摩擦阻力隨著雷諾數(shù)的增大而增大;兩相流動(dòng)時(shí),在體積流量為28L/h條件下,流體工質(zhì)在槽道內(nèi)的兩相壓降隨著加熱功率的增大而增大。②在換熱特性方面,單相流時(shí)在體積流量為80L/h條件下,局部換熱系數(shù)隨電加熱片功率的增加基本保持不變;在體積流量為28L/h的兩相流動(dòng)條件下,電加熱片區(qū)域的局部傳熱系數(shù)隨電加熱片功率的增大而增大。
[Abstract]:With the development of large scale integration of electronic components and high power chips, the thermal loss on components is further increased, resulting in a significant increase in the equivalent heat flux. The traditional air-cooled or water-cooled heat dissipation schemes can not meet the requirements of heat dissipation. Therefore, it has become a trend to explore a new heat dissipation solution for thermal management of power electronic components. In view of the characteristics and practical requirements of high heat flux discrete heat source heat management solution in engineering practice, this paper proposes a heat dissipation solution using phase change heat transfer in a small channel, and designs and builds a pump assisted phase change heat transfer system. The circulating pump is used to drive the high temperature refrigerant R114 to solve the heat dissipation problem of discrete and high power electronic components. This paper introduces the advantages of the two-phase heat dissipation experimental system compared with the conventional steam compression refrigeration system, and describes the working principle of the experimental system in detail. That is, refrigerant R114with a certain degree of undercooling in a liquid storage tank, driven by a constant volume gear pump, enters the evaporator to cool the electronic components, causing some refrigerants to undergo phase transition and become a vapor-liquid two-phase mixture with a certain degree of dryness. The condenser is driven by differential pressure to be cooled into a refrigerant liquid with a certain degree of undercooling and reflow back to the refrigerant storage tank to complete the first cycle of the two-phase heat dissipation system. On this basis, three parts of gear pump, evaporator and condenser are designed and purchased to form a two-phase heat dissipation experimental system. The limiting conditions and reference factors of their selection are discussed in detail. The gear pump selects the magnetic drive gear pump with uniform flow rate, constant flow rate and no pulsation phenomenon; the condenser adopts horizontal tube and shell type water cooled condenser; the evaporator uses aluminum alloy as the material for micromilling and cutting, 26 rectangular grooves of 1mm 脳 3mm are designed and machined. Through the experimental study and analysis of the two-phase heat dissipation system, it can be concluded that the friction resistance of the rectangular channel is approximately linear to the Reynolds number in the case of single-phase flow. The friction resistance increases with the increase of Reynolds number, and when the volume flow rate is 28L/h, the two-phase pressure drop of the fluid in the channel increases with the increase of heating power, and the heat transfer characteristic increases with the increase of heating power, and when the volume flow rate is 28L/h, the two-phase pressure drop of the fluid in the channel increases with the increase of heating power. When the volume flow rate is 80L/h, the local heat transfer coefficient remains basically unchanged with the increase of the power of the electric heating plate, and when the volume flow rate is 28L/h, the local heat transfer coefficient remains unchanged. The local heat transfer coefficient increases with the increase of electric heating power.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TN602
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 路尚修;;半導(dǎo)體功率器件散熱系統(tǒng)的設(shè)計(jì)[J];電子工藝技術(shù);1984年12期
2 趙天;張建潤(rùn);林潘忠;;筆記本電腦風(fēng)扇散熱系統(tǒng)低噪聲流場(chǎng)優(yōu)化設(shè)計(jì)[J];噪聲與振動(dòng)控制;2014年03期
3 黃煒;何人望;周瑜;;高壓變頻器散熱系統(tǒng)的研究與設(shè)計(jì)[J];華東交通大學(xué)學(xué)報(bào);2006年05期
4 張?jiān)迄i,套格套,堯舜,陳平,王立軍;大功率半導(dǎo)體激光器全固態(tài)風(fēng)冷散熱系統(tǒng)[J];光電工程;2004年S1期
5 王丹,毛承雄,范澍,馬海晶;高壓變頻器散熱系統(tǒng)的設(shè)計(jì)[J];電力電子技術(shù);2005年02期
6 翟世寬;;西門(mén)子6SE70變頻裝置散熱系統(tǒng)及溫度異常報(bào)警設(shè)定[J];電工技術(shù);2010年06期
7 王志斌;劉永成;李志全;;雙進(jìn)雙出射流水冷大功率LED散熱系統(tǒng)研究[J];光子學(xué)報(bào);2014年07期
8 王俊玲;;打造冷靜的電腦系統(tǒng)[J];科技資訊;2007年20期
9 嚴(yán)旭東;倪原;韋宏利;王航宇;;基于C8051F020的車(chē)輛散熱系統(tǒng)參數(shù)測(cè)試電路研究[J];電子設(shè)計(jì)工程;2009年11期
10 ;揭秘鴻合i-AHCS散熱系統(tǒng)[J];中國(guó)電化教育;2013年07期
相關(guān)重要報(bào)紙文章 前8條
1 記者 陳鈞;投資12億生產(chǎn)散熱系統(tǒng)[N];重慶日?qǐng)?bào);2010年
2 常麗君;新技術(shù)讓汽車(chē)電池拋掉加熱散熱系統(tǒng)[N];科技日?qǐng)?bào);2012年
3 普恚;HP NetServer的散熱秘密[N];計(jì)算機(jī)世界;2001年
4 ;浪潮NP370散熱系統(tǒng)獨(dú)具匠心[N];中國(guó)計(jì)算機(jī)報(bào);2004年
5 ;不搶別人地盤(pán)的MSI FX5900 Ultra顯卡[N];中國(guó)計(jì)算機(jī)報(bào);2003年
6 徐昕;浪潮NF280D:穩(wěn)定才是硬道理[N];中國(guó)計(jì)算機(jī)報(bào);2006年
7 ;“I”的升級(jí)[N];網(wǎng)絡(luò)世界;2006年
8 《計(jì)算機(jī)世界》評(píng)測(cè)實(shí)驗(yàn)室 顧新杰;寧?kù)o·商用空間[N];計(jì)算機(jī)世界;2002年
相關(guān)碩士學(xué)位論文 前8條
1 岳瑩;基于數(shù)值方法的裝載機(jī)分離式散熱系統(tǒng)性能研究[D];河北工程大學(xué);2015年
2 甘新海;泵輔助兩相散熱系統(tǒng)的設(shè)計(jì)與實(shí)驗(yàn)研究[D];重慶大學(xué);2015年
3 宋威;電子器件風(fēng)冷散熱系統(tǒng)的流動(dòng)與傳熱性能研究[D];華中科技大學(xué);2011年
4 楊炎超;投影機(jī)水冷散熱系統(tǒng)設(shè)計(jì)[D];南京理工大學(xué);2010年
5 闕翔;便攜式計(jì)算機(jī)散熱系統(tǒng)研究[D];蘇州大學(xué);2014年
6 徐國(guó)濤;臺(tái)式計(jì)算機(jī)水冷散熱系統(tǒng)優(yōu)化研究[D];華北電力大學(xué)(河北);2009年
7 姬文飛;大功率LED燈具散熱系統(tǒng)的設(shè)計(jì)和研究[D];上海交通大學(xué);2009年
8 付秋剛;大功率LED路燈散熱系統(tǒng)的優(yōu)化設(shè)計(jì)[D];華南理工大學(xué);2011年
,本文編號(hào):1970395
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1970395.html