微弱信號(hào)采集的前置放大器設(shè)計(jì)與研究
本文選題:前置放大器 + 微弱信號(hào)采集 ; 參考:《杭州電子科技大學(xué)》2017年碩士論文
【摘要】:隨著現(xiàn)代科學(xué)技術(shù)的發(fā)展,微弱信號(hào)的采集與分析技術(shù)逐漸成熟,促進(jìn)了國(guó)防科技,生物醫(yī)學(xué),工業(yè)應(yīng)用以及各基礎(chǔ)學(xué)科領(lǐng)域的技術(shù)進(jìn)步。微弱信號(hào)通過各類傳感器轉(zhuǎn)換為電學(xué)信號(hào),但傳感器輸出的信號(hào)通常微弱且頻率較低,需要一個(gè)高性能的模擬前端鏈路來(lái)處理信號(hào),它是微弱信號(hào)采集系統(tǒng)的核心模塊。自然界中的低頻微弱信號(hào)種類眾多,本文將以典型的生物醫(yī)學(xué)信號(hào)作為研究對(duì)象進(jìn)行電路設(shè)計(jì)。本文以有效提取生物醫(yī)學(xué)信號(hào)為目的,致力于設(shè)計(jì)一個(gè)低噪聲,低功耗和低芯片面積的模擬CMOS前置放大電路。由于生物醫(yī)學(xué)信號(hào)因個(gè)體差異和采集環(huán)境不同會(huì)導(dǎo)致其幅度存在較大差異,本文將設(shè)計(jì)一個(gè)電阻式可變?cè)鲆娣糯笃?利用可變?cè)鲆娣糯笃髟鲆婵烧{(diào)的特性,來(lái)針對(duì)不同的生物醫(yī)學(xué)信號(hào)選用不同的增益實(shí)現(xiàn)放大,放大器能夠分別實(shí)現(xiàn)對(duì)腦電信號(hào)的100倍放大和神經(jīng)信號(hào)的1000倍放大。為了提高電路的電源電壓抑制比,并抑制采樣傳感器帶來(lái)的直流漂移電壓,本文引進(jìn)著名的“交流耦合-電容反饋”儀表放大電路,它使用電容和高阻抗的NMOS電阻,產(chǎn)生帶通濾波效果,還可以去除低頻和高頻的噪聲。整體的前置放大電路由可變?cè)鲆娣糯笃骱蛢x表放大器級(jí)聯(lián)而成,本文將分別探討不同級(jí)聯(lián)架構(gòu)的性能,并針對(duì)幅度在0.5Hz-1kHz的生物醫(yī)學(xué)信號(hào),例如人體的心電信號(hào),采取最適合的儀表放大器級(jí)聯(lián)可變?cè)鲆娣糯笃鞯募軜?gòu),該架構(gòu)可以實(shí)現(xiàn)對(duì)信號(hào)的1000倍放大,并能達(dá)到良好的性能指標(biāo)。本文提出的模擬前置放大電路工作電壓為1V,采用0.18μm CMOS工藝,使用Hspice工具進(jìn)行仿真,整體電路平均消耗功率為2.9μW,增益約為57.6 dB,共模抑制比約為120 dB,0.5Hz-200 Hz頻率范圍內(nèi)的等效輸入噪聲為1.59μV。
[Abstract]:With the development of modern science and technology, the acquisition and analysis of weak signals is becoming more and more mature, which promotes the progress of defense technology, biomedicine, industrial application and various basic disciplines. The weak signal is converted into electrical signal by various sensors, but the signal output by the sensor is usually weak and the frequency is low. It needs a high performance analog front-end link to process the signal, which is the core module of the weak signal acquisition system. There are many kinds of low frequency weak signals in nature. In order to extract biomedical signals effectively, a low noise, low power and low chip area analog CMOS preamplifier circuit is designed in this paper. Because the amplitude of biomedical signals varies greatly due to individual differences and different acquisition environments, a resistive variable gain amplifier is designed to make use of the adjustable gain characteristics of the variable gain amplifier. The amplifier can amplify the EEG signal by 100 times and the nerve signal by 1000 times respectively. In order to improve the supply voltage rejection ratio of the circuit and suppress the DC drift voltage brought by the sampling sensor, this paper introduces the famous "AC coupling-capacitance feedback" instrument amplifier circuit, which uses the capacitance and the high impedance NMOS resistance. The effect of bandpass filtering is produced, and the noise of low frequency and high frequency can be removed. The whole preamplifier circuit consists of a variable gain amplifier and an instrument amplifier. This paper will discuss the performance of different cascade architectures, and aim at biomedical signals with amplitude in 0.5Hz-1kHz, such as ECG signals of human body. Adopting the most suitable architecture of cascade variable gain amplifier of instrument amplifier, the architecture can amplify the signal 1000 times and achieve good performance. The working voltage of the analog preamplifier circuit is 1V, and 0.18 渭 m CMOS process is adopted. The simulation is carried out by using Hspice tool. The average power consumption of the whole circuit is 2.9 渭 W, the gain is about 57.6 dB, and the common-mode rejection ratio is about 120 dB 0.5 Hz ~ 200 Hz. The equivalent input noise is 1.59 渭 V in the frequency range of 0.5 Hz to 200 Hz.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN722.71
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 陳睿;余永濤;董剛;上官士鵬;封國(guó)強(qiáng);韓建偉;馬英起;朱翔;;不同工藝尺寸CMOS器件單粒子閂鎖效應(yīng)及其防護(hù)方法[J];強(qiáng)激光與粒子束;2014年07期
2 夏均忠;劉遠(yuǎn)宏;冷永剛;葛紀(jì)桃;;微弱信號(hào)檢測(cè)方法的現(xiàn)狀分析[J];噪聲與振動(dòng)控制;2011年03期
3 湯滟;;高性能可變?cè)鲆娣糯笃?VGA)設(shè)計(jì)探討[J];山西電子技術(shù);2010年04期
4 張金勇;李斌;王磊;;生物醫(yī)學(xué)信號(hào)采集的多通道模擬前端集成電路[J];中國(guó)生物醫(yī)學(xué)工程學(xué)報(bào);2010年02期
5 張石銳;鄭文剛;黃丹楓;趙春江;;微弱信號(hào)檢測(cè)的前置放大電路設(shè)計(jì)[J];微計(jì)算機(jī)信息;2009年23期
6 郭峰;李智群;陳東東;李海松;王志功;;寬帶CMOS可變?cè)鲆娣糯笃鞯脑O(shè)計(jì)[J];半導(dǎo)體學(xué)報(bào);2007年12期
7 蔡延財(cái);劉勇;陳永冰;王璐;;基于儀表放大器的傳感器信號(hào)采集電路設(shè)計(jì)[J];現(xiàn)代電子技術(shù);2007年06期
8 何崢嶸;;運(yùn)算放大器電路的噪聲分析和設(shè)計(jì)[J];微電子學(xué);2006年02期
9 田俊,王志功,梁幫立,熊明珍,施毅,鄭有p,
本文編號(hào):1950130
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1950130.html