銀表面等離子體增強有機電致發(fā)光特性研究
本文選題:有機電致發(fā)光 + 導電薄膜; 參考:《聊城大學》2015年碩士論文
【摘要】:有機電致發(fā)光器件被廣泛應用于照明、平板顯示等行業(yè),由于有機電致發(fā)光器件具有亮度高,功率效率高,自主發(fā)光,全固態(tài)易彎曲,可視角大等優(yōu)點,具有廣泛的應用前景。有機電致發(fā)光器件對制備環(huán)境要求極為苛刻,極容易在空氣中被氧化從而壽命受到影響。高效率的發(fā)光器件需要高功函數(shù)高透明度的陽極,高效的空穴,電子傳輸材料以及高效的發(fā)光材料。本文深入研究有機電致發(fā)光器件的發(fā)光機理,針對目前有機發(fā)光器件中面臨的主要問題:高功函數(shù)透明陽極,載流子注入不平衡,發(fā)光層發(fā)光效率低等,提出解決方案。首先,有機電致發(fā)光器件對陽極的要求極為嚴格,必須同時具備高透過率,高電導,高功函數(shù),表面平整度好;谶@點我們設計了Zn O/metal/Zn O多層膜機構來制備實驗所需的透明導電薄膜。實驗表明:當Zn O厚度為21.6nm,中間金屬Au的厚度為6nm時,薄膜的導電率為6.89×10-4?·cm,可見光范圍內透過率達80%以上,表面粗糙度為Rs=1.4nm,完全滿足有機電致發(fā)光器件的要求。運用統(tǒng)計學原理和量子力學原理對膜系的導電機理進行分析,提出了它的電阻率模型。最后同實驗結果進行比較,發(fā)現(xiàn)理論模擬和實驗結果符合較好。有機材料空穴遷移率一般比電子遷移率大兩個數(shù)量級以上,這使得器件發(fā)光層中載流子濃度不平衡,造成載流子的浪費,嚴重影響器件的發(fā)光效率和性能。針對此問題,本文通過使用銀鋁共摻硫化鋅作為電子傳輸材料來提高電子遷移率。通過理論計算發(fā)現(xiàn),當共摻硫化鋅厚度為4.4nm時具有較好的電子傳輸性能。實驗結果表明,當共摻硫化鋅厚度為8nm時,器件的發(fā)光強度和相對外量子效率較沒有電子傳輸層的器件分別提高了430倍和130倍。同時我們制備了以高效電子傳輸材料TPBi為電子傳輸層的發(fā)光器件。對比發(fā)光強度和外量子效率發(fā)現(xiàn),銀鋁共摻硫化鋅作為電子傳輸層具有更高的電子遷移率,使得器件中載流子濃度趨于平衡,因而具有更高的發(fā)光強度與發(fā)光效率。當光照射金屬表面及具有納米微結構的金屬時會產生表面等離子體共振現(xiàn)象,此過程往往伴隨著能量轉移。在有機電致發(fā)光器件中引入金屬納米顆?梢哉T發(fā)新的能量轉移途徑,從而打破熒光效率僅有25%的限制。本文通過控制有機材料的蒸鍍速率,使其表面形成具有均勻的納米微孔,再在其表面慢速率的蒸鍍金屬銀填充有機物納米微孔,形成金屬銀納米顆粒。實驗表明:由于金屬銀納米顆粒的引入,使得器件的發(fā)光強度提高了5.5倍,相對外量子效率較沒有金屬納米顆粒的器件有明顯的提升。器件的熒光瞬態(tài)壽命譜表明,銀納米顆粒的引入,使得發(fā)光材料的壽命從11.68ns提高到13.10ns。熒光壽命的延長說明銀納米顆粒的引入使得器件中出現(xiàn)了新的能量轉移途徑,降低了激子非輻射弛豫過程中的能量損失。
[Abstract]:Organic electroluminescent devices (OLEDs) are widely used in lighting, flat panel display and other industries. Due to the advantages of high luminance, high power efficiency, independent luminescence, easy bending of all solid state and large viewing angle, organic electroluminescent devices have a wide application prospect. Organic electroluminescent devices (OLEDs) require extremely harsh preparation environment and are easily oxidized in air and thus their lifetime is affected. High efficiency luminescent devices require high power function, high transparency anode, high efficiency hole, electron transport material and high efficiency luminescent material. In this paper, the luminescence mechanism of organic electroluminescent devices (OLEDs) is deeply studied, and a solution is put forward to solve the main problems in OLEDs, such as transparent anode with high power function, unbalanced carrier injection and low luminous efficiency. First of all, organic electroluminescent devices must have high transmittance, high conductivity, high power function and good surface smoothness. Based on this, a Zn O/metal/Zn O multilayer mechanism is designed to prepare transparent conductive thin films for experiments. The experimental results show that when the thickness of Zn O is 21.6 nm and the thickness of intermediate metal au is 6nm, the conductivity of the film is 6.89 脳 10 ~ (-4) cm, the transmittance is over 80% in the visible range, and the surface roughness is 1.4 nm, which fully meets the requirements of organic electroluminescent devices. The electrical conduction mechanism of the film system is analyzed by using the principle of statistics and quantum mechanics, and its resistivity model is proposed. Finally, compared with the experimental results, it is found that the theoretical simulation is in good agreement with the experimental results. The hole mobility of organic materials is generally more than two orders of magnitude higher than that of electron mobility, which makes the carrier concentration in the luminous layer unbalance, resulting in a waste of carriers, which seriously affects the luminescence efficiency and performance of the device. In order to improve the electron mobility, the silver aluminum co-doped zinc sulfide is used as the electron transport material. Through theoretical calculation, it is found that when the thickness of co-doped zinc sulfide is 4.4nm, it has better electron transport performance. The experimental results show that when the thickness of co-doped zinc sulfide is 8nm, the luminescence intensity and the relative external quantum efficiency of the device are 430 and 130 times higher than those of the device without electron transport layer, respectively. At the same time, we have fabricated the light-emitting devices with the high efficiency electron transport material TPBi as the electron transport layer. Compared with the luminescence intensity and quantum efficiency it is found that the silver aluminum co-doped zinc sulfide as the electron transport layer has higher electron mobility which makes the carrier concentration in the device tend to balance so that it has higher luminescence intensity and luminescence efficiency. Surface plasmon resonance (SPR) occurs when the light shines on the metal surface and the metal with nanoscale structure, which is often accompanied by energy transfer. The introduction of metal nanoparticles in organic electroluminescent devices can induce new energy transfer pathways, thus breaking the limit of only 25% fluorescence efficiency. In this paper, by controlling the evaporation rate of organic materials, a uniform nanometer micropore is formed on the surface of organic materials, and then the slow rate evaporation silver plating on the surface of organic materials is filled with organic nano-micropores to form metallic silver nanoparticles. The experimental results show that the luminescence intensity of the device is increased 5.5 times because of the introduction of silver nanoparticles, and the quantum efficiency of the device is obviously improved compared with that of the device without metal nanoparticles. The fluorescence transient lifetime spectra show that the lifetime of the luminescent material increases from 11.68ns to 13.10nswith the introduction of silver nanoparticles. The prolongation of fluorescence lifetime indicates that the introduction of silver nanoparticles leads to a new energy transfer pathway and reduces the energy loss in the exciton nonradiative relaxation process.
【學位授予單位】:聊城大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TN383.1
【共引文獻】
相關期刊論文 前10條
1 吳明在;孫兆奇;劉艷美;馬永青;戴鵬;;簡諧晶體高溫比熱的量子修正[J];合肥師范學院學報;2010年06期
2 孟影;張曉森;汪月琴;;用簡并微擾法分析金屬晶體中散射波較強情況[J];合肥師范學院學報;2011年06期
3 李嘉亮,陳益妹;熱力學第三定律的一種新的論證方法[J];安慶師范學院學報(自然科學版);2005年01期
4 丁長庚;用近自由電子近似法計算硅的能帶[J];安慶師范學院學報(自然科學版);1995年03期
5 岳蘭;孟繁新;;沉積溫度對納米ZnO薄膜的結構和光電性能的影響[J];半導體光電;2010年05期
6 顧懷懷;程秀蘭;施亮;林昆;;金屬納米晶存儲器件數(shù)據(jù)保持能力建模與驗證[J];半導體技術;2008年03期
7 程江;朱世富;趙北君;趙欣;陳寶軍;何知宇;楊慧光;孫永強;張羽;;通過退火研究ZnGeP_2晶體中點缺陷與紅外透過率的關系[J];半導體技術;2008年S1期
8 樊康旗,賈建援,朱應敏;體心立方晶體用于實現(xiàn)原子級存儲的可行性[J];微納電子技術;2005年05期
9 郭曉光;郭東明;康仁科;金洙吉;;單晶硅納米級磨削過程中磨粒磨損的分子動力學仿真[J];半導體學報;2008年06期
10 郎明,姜宏,徐鴻文,魯鵬,郭衛(wèi),王自強;氧分壓對磁控濺射法制備TiO_2薄膜及其光催化性能的影響[J];玻璃;2004年03期
相關博士學位論文 前10條
1 魏洪源;原子分子在δ-Pu上的吸附、離解與擴散過程研究[D];中國工程物理研究院;2010年
2 姜恒;多尺度結構功能材料在水下聲隱身中的應用基礎研究[D];哈爾濱工程大學;2009年
3 曲華;摻雜型ZnS納米粒子的制備及表面修飾對其發(fā)光性質的影響[D];中國海洋大學;2010年
4 燕保榮;電磁波與低維固體表面等離體子相互作用的研究[D];華中科技大學;2010年
5 孫松;TiO_2基光催化劑的制備、結構及光催化降解VOCs性能與機理研究[D];中國科學技術大學;2010年
6 何麗娟;新型光激放電測量裝置研制及典型聚合物PSD譜[D];哈爾濱理工大學;2010年
7 王亞珍;基于熱力耦合的界面摩擦機理的研究[D];華南理工大學;2010年
8 姚宗健;橫向振動在周期復合結構板中傳播問題的研究[D];北京交通大學;2010年
9 俞琳;非磁性離子摻雜寬帶隙半導體磁性的第一性原理研究[D];山東大學;2010年
10 張震;可見光CCD的激光致,F(xiàn)象與機理研究[D];國防科學技術大學;2010年
相關碩士學位論文 前10條
1 李沖;超導材料性質和半導體表面重構及表面合金性質[D];鄭州大學;2010年
2 王志鵬;基于拉曼光譜下的A_2(MoO_4)_3材料熱膨脹性研究[D];鄭州大學;2010年
3 姜雅麗;La_2Mo_3O_(12)薄膜的制備和光學性能的研究[D];鄭州大學;2010年
4 馬明明;有限寬介觀環(huán)中持續(xù)電流的量子尺寸與梯度無序效應[D];湘潭大學;2010年
5 劉心娟;納米材料彈性及熱穩(wěn)定性的尺寸效應[D];湘潭大學;2010年
6 陳風;六角氮化硼納米帶的電子輸運性質[D];湘潭大學;2010年
7 吳東;Ca-Co-O體系氧化物熱電材料的制備與性能研究[D];昆明理工大學;2008年
8 張利娟;Mg-Al合金早期時效過程分析與第一原理及分子動力學研究[D];昆明理工大學;2009年
9 蔡俊晟;CdSe基異質結納米線的可控制備和振動性能研究[D];東華大學;2011年
10 黃鶴;4H-SiC材料中刃型位錯的理論研究[D];西安電子科技大學;2011年
,本文編號:1935585
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1935585.html