二維材料光電性質(zhì)改性的第一性原理研究
本文選題:二維材料 + 密度泛函理論; 參考:《中國科學(xué)院大學(xué)(中國科學(xué)院上海技術(shù)物理研究所)》2017年碩士論文
【摘要】:二維材料憑借它非比尋常的物理特性在電學(xué)和光電子領(lǐng)域展現(xiàn)出很大的應(yīng)用潛能。對(duì)器件來說,如場(chǎng)效應(yīng)晶體管,半導(dǎo)體二維材料需要金屬接觸電極,半導(dǎo)體金屬接觸往往在界面形成一個(gè)肖特基勢(shì)壘。如何形成低電阻接觸是一個(gè)挑戰(zhàn),這對(duì)于實(shí)現(xiàn)高的開電流、大的光響應(yīng)和高頻運(yùn)行是十分重要的。本文基于密度泛函理論的第一性原理方法研究了二維材料本征特性、摻雜對(duì)二維材料電子結(jié)構(gòu)的影響、金屬-二維材料接觸肖特基勢(shì)壘以及摻雜對(duì)金屬-二維材料界面肖特基勢(shì)壘的影響。具體內(nèi)容包括:1.利用第一性原理的方法研究了體材料石墨、MoS2、WS2和黑磷的最穩(wěn)定結(jié)構(gòu),得到了相應(yīng)原胞的總能和體材料的晶格常數(shù)。2.在優(yōu)化好體材料石墨、MoS2、WS2和黑磷的原胞晶格常數(shù)的基礎(chǔ)上,建立相應(yīng)的單層結(jié)構(gòu),通過原子弛豫得到了穩(wěn)定的單層二維材料,分別采用LDA和GGA形式的交換關(guān)聯(lián)能計(jì)算了graphene、單層MoS2、單層WS2和單層BP的能帶和態(tài)密度,研究結(jié)果一致表明:graphene是0帶隙的半金屬,單層MoS2、單層WS2和單層BP均為直接帶隙半導(dǎo)體。3.在優(yōu)化好MoS2晶格常數(shù)的基礎(chǔ)上建立了3×3×1的單層MoS2超胞,研究了S空位和Mo空位的缺陷形成能,發(fā)現(xiàn)S空位的缺陷形成能比Mo空位的小,這說明S空位形式的缺陷更容易形成,這與實(shí)驗(yàn)上觀察到純凈MoS2表面容易產(chǎn)生S空位的結(jié)論是一致的。據(jù)此,計(jì)算了不同鹵族原子替代S原子摻雜的缺陷形成能,發(fā)現(xiàn)Ef(F)Ef(I)Ef(Cl)Ef(Br),這說明在單層MoS2中F原子最容易摻雜,Br原子比較難摻入單層MoS2。計(jì)算了鹵族原子替代S摻雜后穩(wěn)定結(jié)構(gòu)的能帶和態(tài)密度,發(fā)現(xiàn)鹵族元素?fù)诫s使得帶隙寬度變大,并在帶隙中引入了雜質(zhì)能級(jí)。4.通過固定二維材料的晶格常數(shù),以金屬匹配二維材料晶格常數(shù)的形式建立了金屬-二維材料界面,包括:(1)Mg-graphene、Cu-graphene、Al-graphene、Au-graphene、Pt-graphene,用基于密度泛函理論的第一性原理方法研究了金屬對(duì)石墨烯費(fèi)米能級(jí)的調(diào)制效應(yīng),發(fā)現(xiàn)Mg、Cu和Al金屬對(duì)石墨烯的費(fèi)米能級(jí)屬于n型調(diào)控,而Au和Pt對(duì)石墨烯費(fèi)米能級(jí)的調(diào)控屬于p型調(diào)控,計(jì)算結(jié)果和文獻(xiàn)報(bào)道是一致的;(2)Mg-MoS2、Al-MoS2、Cu-MoS2、Au-MoS2、Ti-MoS2、Ni-MoS2、Pt-MoS2、Pd-MoS2,研究結(jié)果顯示Mg、Al、Cu、Au和單層MoS2接觸屬于n型接觸,其中Mg、Al、Cu與單層MoS2接觸形成的肖特基勢(shì)壘高度較低,比較接近歐姆接觸,而Au、Ti、Ni、Pt、Pd和單層MoS2接觸形成的肖特基勢(shì)壘高度較高,是典型的肖特基接觸;(3)Mg-WS2、Cu-WS2、Al-WS2、Ti-WS2、Au-WS2、Ni-WS2、Pt-WS2、Pd-WS2,其中Mg、Cu、Al與單層WS2接觸形成的肖特基勢(shì)壘高度較低,比較接近歐姆接觸,而Au、Ni、Ti、Pt、Pd和單層WS2接觸形成的肖特基勢(shì)壘高度較高,是典型的肖特基接觸;(4)Al-BP、Au-BP,結(jié)果顯示Al和黑磷接觸形成的勢(shì)壘要比Au和黑磷接觸形成的勢(shì)壘低,這說明相比于Au,Al可能是更好的金屬電極。5.通過第一性原理方法研究了鹵族元素?fù)诫s對(duì)Au-MoS2界面肖特基勢(shì)壘的影響和Se摻雜對(duì)Au-BP界面肖特基勢(shì)壘的影響。研究結(jié)果表明,F和Cl原子的摻雜將會(huì)降低Au-MoS2體系的肖特基勢(shì)壘高度,相比之下,Br和I原子的摻雜卻增大了Au-MoS2體系的肖特基勢(shì)壘高度,通過差分電荷密度和布居分布的分析,闡明了肖特基勢(shì)壘高度的被調(diào)制是因?yàn)殡姾赊D(zhuǎn)移形成的界面偶極矩的作用導(dǎo)致;Se原子摻雜能夠有效降低Au-BP界面肖特基勢(shì)壘高度,這與實(shí)驗(yàn)上得到的結(jié)果是一致的,通過分析摻雜前后界面間的電荷密度,解釋了Au-BP界面肖特基勢(shì)壘高度降低的原因。
[Abstract]:Two-dimensional materials show great potential in the field of electrical and photoelectron with its unusual physical properties. For devices, such as field effect transistors, semiconductor two-dimensional materials require metal contact electrodes, and semiconductor metal contacts tend to form a Schottky barrier at the interface. How to form low resistance contact is a challenge, This is very important for high open current, large optical response and high frequency operation. Based on the first principle of density functional theory, this paper studies the intrinsic properties of two dimensional materials, the influence of doping on the electronic structure of two dimensional materials, the contact of the metal - 2-D material to the Schottky barrier and the doping to the metal - two-dimensional material interface Schott The specific contents of the base barrier include: 1. the most stable structure of graphite, MoS2, WS2 and black phosphorus was studied by the method of first principle, and the lattice constant of the corresponding primary energy and the lattice constant of the body material was obtained, based on the lattice constant of the optimized bulk material graphite, MoS2, WS2 and black phosphorus, and the corresponding single layer structure was established. The stable single-layer two-dimensional materials are obtained by atomic relaxation. The energy band and state density of graphene, single layer MoS2, single layer WS2 and single layer BP are calculated by the Exchange Association of LDA and GGA respectively. The results show that graphene is 0 band gap semi metal, single layer MoS2, single layer WS2 and single layer BP are direct band gap semiconductor.3.. On the basis of good MoS2 lattice constant, 3 x 3 x 1 single layer MoS2 supercell is established, and the defect formation energy of S vacancy and Mo vacancy is studied. It is found that the defect formation of S vacancy can be smaller than that of Mo vacancy, which indicates that the defects of S vacancy form are easier to form, which is in agreement with the conclusion that the S vacancy is easily produced by the pure MoS2 surface. Ef (F) Ef (I) Ef (Cl) Ef (Br) is found by the substitution of different halogen atoms for the doping of S atoms, which indicates that the F atom in a single layer MoS2 is the most easily doped, and the Br atom is difficult to add a single layer to the single layer to calculate the band and state density of the stable structure after the substitution of the halogen atom. The lattice constant of the impurity energy level.4. is introduced in the band gap, and the metal - 2-D material interface is established in the form of the lattice constant of the metal matching two-dimensional material, including: (1) Mg-graphene, Cu-graphene, Al-graphene, Au-graphene, Pt-graphene. The metal pair is studied by the first principle method based on the density functional theory. The modulation effect of Fermi energy level of graphene shows that the Fermi level of Mg, Cu and Al metals belongs to n regulation, while Au and Pt control the Fermi level of graphene belongs to p type regulation, and the results are in agreement with the literature. (2) Mg-MoS2, Al-MoS2, Cu-MoS2, Au-MoS2, Ti-MoS2 MoS2 contact with single layer MoS2 is n type contact, and the Schottky barrier formed by Mg, Al, and single layer MoS2 is relatively low, which is closer to Ohm contact, while Au, Ti, Ni, Pt, Pd and single-layer MoS2 form the high height of Schottky barrier, which is a typical Schottky contact. The Schottky barrier formed by Cu, Al and monolayer WS2 is lower and closer to Ohm contact, while Au, Ni, Ti, Pt, Pd and single-layer WS2 contact are high, and the Schottky barrier is the typical Schottky contact; (4) Al-BP, Au-BP. The results show that the potential barrier formed by the contact of Al and black phosphorus is lower than that formed by contact with black phosphorus. Compared to Au, Al may be a better metal electrode.5.. The effect of the halogen element doping on the Schottky barrier of the Au-MoS2 interface and the influence of Se doping on the Schottky barrier at the Au-BP interface are investigated by the first principle method. The results show that the doping of F and Cl atoms will reduce the Schottky barrier height of the Au-MoS2 body, by contrast, Br and I. The doping of the atom increases the Schottky barrier height of the Au-MoS2 system. Through the analysis of the difference charge density and distribution, it is stated that the modulation of the Schottky barrier height is caused by the effect of the interface dipole moment formed by the charge transfer; the doping of the Se atom can effectively reduce the Schottky barrier height of the Au-BP interface, which is in the experiment. The results obtained are consistent. By analyzing the charge density between the interfaces before and after doping, the reason for the reduction of Schottky barrier height at Au-BP interface is explained.
【學(xué)位授予單位】:中國科學(xué)院大學(xué)(中國科學(xué)院上海技術(shù)物理研究所)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN304
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 相島亞洲雄;西村彰;佟振聲;孫道云;;肖特基勢(shì)壘耿二極管的分析[J];半導(dǎo)體情報(bào);1979年06期
2 田敬民;肖特基勢(shì)壘特性參數(shù)測(cè)試數(shù)據(jù)的計(jì)算機(jī)處理[J];半導(dǎo)體技術(shù);1990年04期
3 楊林安,周南生,嚴(yán)北平;二硅化鈦/硅的肖特基勢(shì)壘研究[J];微電子學(xué)與計(jì)算機(jī);1990年08期
4 王菁,李美成,吳敢,李勇華,楊建平,雷占許,李東輝,陳學(xué)康;降低肖特基勢(shì)壘高度的途徑探討[J];半導(dǎo)體光電;2000年04期
5 符秀麗,王太宏;原位電化學(xué)法制備納米尺寸金屬肖特基勢(shì)壘研究[J];微納電子技術(shù);2002年11期
6 Masaki Ogawa;袁明文;;砷化鎵合金型的肖特基勢(shì)壘接觸[J];半導(dǎo)體情報(bào);1974年07期
7 陳坤基,何宇亮,杜家方;非晶態(tài)硅薄膜的制備及其肖特基勢(shì)壘的研究[J];半導(dǎo)體學(xué)報(bào);1980年03期
8 羅浩平 ,李其中 ,江鋒 ,馬洪芳;用于砷化鎵單片集成的肖特基勢(shì)壘[J];微電子學(xué);1981年03期
9 黃慶安;;用激光輻照工藝制造肖特基勢(shì)壘[J];半導(dǎo)體技術(shù);1986年03期
10 張世表,史尚ul;碲化鎘肖特基勢(shì)壘的溫度依賴關(guān)系[J];半導(dǎo)體學(xué)報(bào);1988年04期
相關(guān)會(huì)議論文 前8條
1 陳勇;程綱;杜祖亮;;磁場(chǎng)調(diào)控一維ZnO納米材料肖特基勢(shì)壘的輸運(yùn)性質(zhì)[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第32分會(huì):納米表征與檢測(cè)技術(shù)[C];2014年
2 宋笑影;程綱;杜祖亮;;基于電子束刻蝕方法制備單肖特基勢(shì)壘光電二極管及其光電特性研究[A];中國化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第32分會(huì):納米表征與檢測(cè)技術(shù)[C];2014年
3 劉曉彥;孫雷;杜剛;韓汝琦;;肖特基隧道晶體管中的量子效應(yīng)[A];第一屆全國納米技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2000年
4 孫迎新;高葆新;林金庭;陳克金;;肖特基結(jié)電容與FET轉(zhuǎn)移特性的改進(jìn)模型[A];1995年全國微波會(huì)議論文集(上冊(cè))[C];1995年
5 張國俊;陳祺;董安意;;肖特基勢(shì)壘整流二極管熱阻測(cè)試方法[A];2010’全國半導(dǎo)體器件技術(shù)研討會(huì)論文集[C];2010年
6 熊平;唐遵烈;鄧光華;李平;易平;;1024元線列PtSi肖特基勢(shì)壘紅外CCD[A];2004全國圖像傳感器技術(shù)學(xué)術(shù)交流會(huì)議論文集[C];2004年
7 程綱;武興會(huì);李云濤;李兵;杜祖亮;;氧化物納米線肖特基勢(shì)壘的傳輸特性及光電器件研究[A];中國化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第4分會(huì)場(chǎng)摘要集[C];2012年
8 李美成;趙連城;陳學(xué)康;;氣相激光化學(xué)摻雜PtSi/p~+/p-Si薄膜的界面結(jié)構(gòu)與肖特基特性[A];2002年材料科學(xué)與工程新進(jìn)展(下)——2002年中國材料研討會(huì)論文集[C];2002年
相關(guān)博士學(xué)位論文 前3條
1 湯曉燕;6H-SiC肖特基勢(shì)壘源漏MOSFET理論和實(shí)驗(yàn)的研究[D];西安電子科技大學(xué);2007年
2 程綱;氧化物半導(dǎo)體納米線肖特基勢(shì)壘的傳輸特性及其控制方法研究[D];吉林大學(xué);2008年
3 李定宇;新型源漏結(jié)構(gòu)MOSFET的設(shè)計(jì)和工藝制備研究[D];北京大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 鄭珊;基于原子層淀積高κ介質(zhì)調(diào)制肖特基勢(shì)壘的研究[D];復(fù)旦大學(xué);2014年
2 陳歡文;基于PET柔性襯底的摻錳ZnO薄膜阻變特性研究[D];電子科技大學(xué);2014年
3 顧廣欽;一維納米肖特基勢(shì)壘的雙向電學(xué)輸運(yùn)特性研究[D];河南大學(xué);2015年
4 陶鵬程;二維材料光電性質(zhì)改性的第一性原理研究[D];中國科學(xué)院大學(xué)(中國科學(xué)院上海技術(shù)物理研究所);2017年
5 張巖;基于肖特基勢(shì)壘的電致阻變效應(yīng)研究[D];浙江理工大學(xué);2012年
6 羅佳;新型低勢(shì)壘接觸體系研究[D];復(fù)旦大學(xué);2008年
7 陳杰;金屬源漏多晶硅TFT及非晶IGZO TFT的特性研究[D];蘇州大學(xué);2013年
8 郭俊生;ZnO一維納米結(jié)構(gòu)的電流輸運(yùn)特性和微區(qū)勢(shì)壘結(jié)構(gòu)研究[D];河南大學(xué);2014年
9 沈真;BiFeO_3/γ-Fe_2O_3顆粒膜的光電性能研究[D];西南大學(xué);2014年
10 宋利偉;Ti/Pr(Sr_(0.1)Ca_(0.9))_2Mn_2O_7/Pt異質(zhì)結(jié)的電阻轉(zhuǎn)變效應(yīng)與磁性研究[D];河北師范大學(xué);2014年
,本文編號(hào):1900879
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1900879.html