行波管噪聲的研究
本文選題:螺旋線行波管 + 散粒噪聲; 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:行波管和速調(diào)管是兩種主要的線性注微波器件。其中,行波管是一種功率通常為幾十到幾千瓦,頻帶寬度可以到2個(gè)倍頻程的寬帶器件。而且,行波管具有非常廣泛的應(yīng)用領(lǐng)域,現(xiàn)今大多數(shù)衛(wèi)星通信系統(tǒng)都使用行波管作為末級(jí)放大器。在大多數(shù)雷達(dá)系統(tǒng)中,都通常使用一支或若干只行波管作為產(chǎn)生高頻發(fā)射脈沖的大功率放大器。由于行波管中電子發(fā)射的隨機(jī)性,電子總是先后隨機(jī)、速度不均勻地進(jìn)入高頻互作用區(qū)。這就意味著會(huì)不可避免地產(chǎn)生噪聲,并導(dǎo)致通訊電子系統(tǒng)的輸出功率變化,最終影響雷達(dá)系統(tǒng)的辨錯(cuò)能力和提高通訊系統(tǒng)的錯(cuò)碼率。該文章采用理論分析推導(dǎo)與計(jì)算機(jī)宏粒子模擬的方法,深入研究了行波管噪聲的產(chǎn)生、變化情況及抑制噪聲的方法,論文的主要內(nèi)容與創(chuàng)新點(diǎn)如下:1.研究分析了行波管噪聲的產(chǎn)生、傳播、增長及對(duì)功率的影響,這對(duì)解釋行波管中噪聲的形成機(jī)理有重要的意義。采用一維線性模型,并利用已有的行波管數(shù)據(jù)計(jì)算噪聲系數(shù)隨著距離的變化情況,并研究不同參數(shù)對(duì)噪聲系數(shù)的影響。2.根據(jù)非線性宏粒子模擬的要求,設(shè)置噪聲的初始狀態(tài)。分別應(yīng)用了SASE的自由電子激光宏粒子設(shè)置方式和麥克斯韋速度分布律來設(shè)置初始噪聲,并且采用了偽隨機(jī)數(shù)的方式對(duì)宏粒子隨機(jī)化設(shè)置。應(yīng)用噪聲設(shè)置方案編寫程序,結(jié)合行波管標(biāo)準(zhǔn)方程進(jìn)行一維非線性噪聲計(jì)算,并獲得噪聲功率譜密度。3.為計(jì)算行波管二維噪聲,設(shè)計(jì)了26-40GHz和33-40GHz兩只不同頻段的螺旋線行波管的高頻結(jié)構(gòu)。利用HFSS軟件與TAU軟件配合使用,使得工作頻段為33-37GHz輸出功率在100w以上,37-40GHz在80W以上。26-40GHz行波管為追求最大功率,全頻段輸出功率都在200W以上。4.根據(jù)所設(shè)計(jì)的螺旋線行波管數(shù)據(jù),開發(fā)了2.5維螺旋線行波管噪聲計(jì)算程序,使其能夠計(jì)算實(shí)際行波管的散粒噪聲和速度噪聲的功率譜密度。并且利用該程序探究不同電參數(shù)對(duì)噪聲結(jié)果的影響,從而給出降低噪聲的方法。
[Abstract]:Traveling wave tube and klystron are two main linear beam microwave devices. Among them, TWT is a kind of wideband device with power of dozens to several kilowatts and bandwidth of up to 2 times. Moreover, TWT has a wide range of applications. Nowadays, most satellite communication systems use TWT as the final amplifier. In most radar systems, one or more traveling wave tubes are usually used as high power amplifiers to generate high frequency transmitting pulses. Because of the randomness of electron emission in traveling wave tube, electrons always enter the high frequency interaction region at random and inhomogeneously. This means that the noise will inevitably be produced and the output power of the communication electronic system will change, which will ultimately affect the error-detection ability of the radar system and improve the code error rate of the communication system. In this paper, theoretical analysis and computer macro particle simulation are used to study the generation, variation and suppression of TWT noise. The main contents and innovations of this paper are as follows: 1. The generation, propagation, growth and influence on power of TWT noise are studied and analyzed, which is of great significance to explain the formation mechanism of TWT noise. Using one dimensional linear model and using existing TWT data, the variation of noise coefficient with distance is calculated, and the influence of different parameters on noise coefficient is studied. According to the requirement of nonlinear macro particle simulation, the initial state of noise is set. SASE's free electron laser macro particle setting method and Maxwell velocity distribution law are applied to set the initial noise, and the pseudo random number is used to set the macro particle randomization. In this paper, the noise setting scheme is used to write a program and the standard equation of traveling wave tube is used to calculate the one-dimensional nonlinear noise, and the noise power spectral density of .3is obtained. In order to calculate the two-dimensional noise of TWT, the high-frequency structures of two helical TWT with different frequency bands 26-40GHz and 33-40GHz are designed. Using HFSS software and TAU software, the maximum output power of 33-37GHz is over 100W, 37-40GHz, 80W, 26-40GHz, and the output power of all frequency band is more than 200W, .4. Based on the designed spiral TWT data, a 2.5 D spiral TWT noise calculation program is developed to calculate the power spectral density of the actual TWT's shot noise and velocity noise. The influence of different electrical parameters on the noise results is explored by using the program, and the method of noise reduction is given.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN124
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 陳文豪;杜磊;莊奕琪;包軍林;何亮;陳華;孫鵬;王婷嵐;;電子器件散粒噪聲測(cè)試方法研究[J];物理學(xué)報(bào);2011年05期
2 馮進(jìn)軍;胡銀富;蔡軍;鄔顯平;唐燁;;W波段行波管發(fā)展評(píng)述[J];真空電子技術(shù);2010年02期
3 王文祥,宮玉彬,魏彥玉,余國芬,趙國慶;大功率行波管新型慢波線技術(shù)的進(jìn)展[J];真空電子技術(shù);2002年06期
4 廖復(fù)疆;功率行波管噪聲系數(shù)的研究[J];電子學(xué)報(bào);1978年01期
5 J .M.Hammer;E.E.Thomas;張倫;;噪聲系數(shù)為1分具的S波段行波管[J];真空電子技術(shù);1964年06期
6 M.R.Currie;李際霖;;微波管中的噪聲現(xiàn)象[J];真空電子技術(shù);1963年06期
相關(guān)會(huì)議論文 前1條
1 宮玉彬;王文祥;覃志東;孫嘉鴻;;微波管中低頻相位噪聲的研究[A];中國電子學(xué)會(huì)真空電子學(xué)分會(huì)第十三屆學(xué)術(shù)年會(huì)論文集(下)[C];2001年
相關(guān)博士學(xué)位論文 前2條
1 張長青;大功率毫米波折疊波導(dǎo)行波管的研究[D];電子科技大學(xué);2011年
2 鞏華榮;微波管離子噪聲的研究[D];電子科技大學(xué);2006年
,本文編號(hào):1895630
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1895630.html