天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 電子信息論文 >

基于TSV的三維高功率芯片的散熱特性研究

發(fā)布時間:2018-05-15 06:21

  本文選題:3D封裝 + 高功率芯片 ; 參考:《西安電子科技大學》2015年碩士論文


【摘要】:三維封裝通過在Z方向堆疊多個裸晶,實現(xiàn)了高密度封裝,滿足了電子產品的低成本、低功耗、小尺寸等方面的要求。然而,3D封裝存在著非常嚴重的散熱問題,因此,對3D高功率芯片進行散熱性能研究具有十分重要的意義。針對3D高功率芯片,將微流道集成在轉接板內,利用微流體的循環(huán)流動帶走發(fā)熱芯片工作時產生的熱量,將芯片的工作溫度維持在合適的范圍內,是一種可行的散熱方案。本文針對功耗為100W,熱流密度為100W/cm2的3D高功率芯片,提出了一種內含TSV和微流道的三維疊層結構,采用微通道液冷技術對芯片進行散熱,建立模型并進行相關研究。本文主要包括以下內容:1、對封裝體內數(shù)量眾多的焊點進行了等效,提出了焊點部分的等效方法,推導了等效熱導率計算公式。建立了含有400個焊點的實際模型和對應的等效模型,在加入填料和不加填料兩種情況下,針對不同的焊點直徑和焊點間距,采用ANSYS Workbench軟件仿真分析了等效方法的誤差,得到結論:采用本文提出的焊點等效方法,Z方向的溫度誤差小于±1.0%,X-Y方向的溫度誤差小于±30.0%。而將焊點部分全部視為焊料的等效方法,Z方向的溫度誤差在±65.0%~±99.0%之間,X-Y方向的溫度誤差很大,在±97.85%~±99.94%之間。2、由于3D封裝體內部TSV尺寸微小且數(shù)量眾多,因此對含有TSV的轉接板進行了等效,推導了等效熱導率計算公式,分析了轉接板的等效熱導率隨TSV直徑、間距、深寬比的變化規(guī)律。建立了包含100個TSV的轉接板的實際模型和對應的等效模型,采用ANSYS Workbench軟件進行穩(wěn)態(tài)熱分析,并對比分析了等效方法的誤差,得到結論:轉接板的等效熱導率隨著TSV直徑的增大而增大,隨著TSV間距的增大而減小,隨著TSV深寬比的增大而減小。采用本文提出的轉接板等效方法,其Z方向和X-Y方向的溫度誤差均低于±10%。3、基于焊點陣列和含有TSV的轉接板的等效方法對整體模型進行了簡化,建立了不加散熱器的仿真模型;建立了含有0.2mm,0.4mm,0.6mm,0.8mm和1.0mm五組不同寬度的微流道的仿真模型,在冷卻液入口流速分別為0.1m/s,0.5m/s,1m/s和2m/s時,采用ANSYS CFX軟件進行了流體動力學仿真,對比分析了微流道內流體的壓力場和芯片上的溫度場,得到結論:不加散熱器時,芯片上的溫度高達1219.6K,而含有0.6mm寬的微流道在入口流速為1m/s時,對應的芯片上的最高溫度降為334.1K;同一冷卻液入口流速下隨著微流道寬度的減小,其換熱能力有所提高,相對壓差有所增加;同一寬度的微流道的散熱能力和相對壓差均隨著冷卻液入口流速的增加而增大。4、在冷卻液入口流速為1m/s時,0.6mm寬的微流道不能滿足微泵的微型化需求,通過對微流道進行結構優(yōu)化,將肋片的占空比由1調整為0.5,仿真后得到結論:在冷卻液入口流速為0.5m/s時,芯片上的最高溫度降為63.5℃,微流道出入口的壓差為0.50441bar,能夠滿足系統(tǒng)熱設計和微泵尺寸微型化的要求。隨后,對散熱系統(tǒng)整體封裝結構進行了初步的設計,從理論上計算得到了系統(tǒng)的流量和壓降分別為258.75mL/min和0.53142bar,并據此進行了微泵的選型。最后,對所有部件進行組裝,得到系統(tǒng)整體的體積約為60mm?60mm?85mm。
[Abstract]:By stacking a number of bare crystals in the direction of Z, 3D Packaging realizes high density packaging and meets the requirements of low cost, low power consumption and small size of electronic products. However, 3D packaging has a very serious heat dissipation problem. Therefore, it is of great significance to study the heat dissipation performance of 3D high power chips. For the high power chip of 3D, In this paper, a 3D high power chip with a power consumption of 100W and a heat flux density of 100W/cm2 is proposed. A kind of TSV and microfluidic channel is proposed. The three dimensional layer structure, using microchannel liquid cooling technology to heat the chip, set up the model and carry on the related research. This article mainly includes the following contents: 1, the equivalent of the number of solder joints in the package is equivalent, the equivalent method of the solder joint part is put forward, the calculation formula of the equivalent thermal conductivity is derived. The practice of the 400 solder joints is established. The model and the corresponding equivalent model are used to analyze the error of the equivalent method by using ANSYS Workbench software to analyze the difference in the diameter of solder joint and the distance between the solder joint without adding two kinds of filler. The conclusion is that the temperature error of the Z direction is less than 1% and the temperature error of the X-Y direction is small by using the equivalent method of the solder joint proposed in this paper. The temperature error in the direction of Z is within + 65.0%~ + 99%, and the temperature error in the direction of X-Y is very large. The temperature error of the X-Y direction is very large. The temperature error of the direction is between + 97.85%~ + 99% and.2. As the TSV size in the 3D package is small and numerous, the equivalent of the switch plate containing TSV is equivalent, and the equivalent thermal conductivity meter is derived. The equivalent thermal conductivity with the TSV diameter, distance and the ratio of depth to width is analyzed. The actual model and corresponding equivalent model of the connecting plate with 100 TSV are established. The steady-state thermal analysis is carried out by ANSYS Workbench software, and the error of the equivalent square method is compared and analyzed. The conclusion is that the equivalent thermal conductivity of the connecting plate is followed by the equivalent thermal conductivity. With the increase of TSV diameter, it decreases with the increase of TSV spacing and decreases with the increase of the ratio of TSV depth to width. The temperature error of the Z direction and X-Y direction is less than + 10%.3 by the equivalent method proposed in this paper, and the integral model is simplified by the same effect method based on the solder joint array and the TSV transfer plate. The simulation model of the radiator is added, and the simulation models with five different widths with different widths of 0.2mm, 0.4mm, 0.6mm, 0.8mm and 1.0mm are established. When the inlet flow velocity of the coolant is 0.1m/s, 0.5m/s, 1m/s and 2m/s, the fluid dynamics simulation is carried out by ANSYS CFX software, and the pressure field and the temperature on the chip are analyzed. In the degree field, it is concluded that the temperature of the chip is up to 1219.6K without the radiator, and the maximum temperature on the corresponding chip is 334.1K when the inlet velocity is 1m/s at the inlet velocity of the 0.6mm wide. With the decrease of the width of the microfluidic channel at the inlet velocity of the same coolant, the relative pressure difference is increased and the width of the relative pressure is increased; the same width is increased. The heat dissipation capacity and relative pressure difference of the microfluidic channel increased with the increase of the inlet flow velocity of the coolant. When the inlet velocity of the coolant was 1m/s, the microchannel of 0.6mm wide could not meet the microminiaturization demand of the micropump. By optimizing the structure of the microfluidic channel, the space ratio of the ribs was adjusted from 1 to 0.5. The result of the simulation was that the cooling solution was entered. When the flow velocity is 0.5m/s, the maximum temperature on the chip is 63.5 C and the pressure difference of the inlet of the micro channel is 0.50441bar. It can meet the requirements of the system thermal design and micro pump size miniaturization. Then, the overall package structure of the heat dissipation system is preliminarily designed. The flow and pressure drop of the system are calculated to be 258.75mL/min, respectively. And 0.53142bar, and based on this, the selection of the micro pump was carried out. Finally, all the components were assembled and the volume of the whole system was about 60mm? 60mm? 85mm..

【學位授予單位】:西安電子科技大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TN405

【參考文獻】

相關期刊論文 前4條

1 徐尚龍;秦杰;胡廣新;;芯片冷卻用微通道散熱結構熱流耦合場數(shù)值研究[J];中國機械工程;2011年23期

2 岳帥旗;劉志輝;徐洋;張剛;;基于LTCC的微通道散熱設計[J];電子元件與材料;2011年12期

3 童志義;;3D IC集成與硅通孔(TSV)互連[J];電子工業(yè)專用設備;2009年03期

4 張棟;付桂翠;;電子封裝的簡化熱模型研究[J];電子器件;2006年03期



本文編號:1891330

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1891330.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶2fd3e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com