新型薄膜體聲波諧振器(FBAR)技術研究
本文選題:薄膜體聲波諧振器(FBAR) + 石墨烯; 參考:《浙江大學》2017年碩士論文
【摘要】:近些年來,新興消費電子的巨大需求帶動了基于半導體微納加工技術的MEMS產業(yè)的蓬勃發(fā)展,薄膜體聲波諧振器(FBAR)作為MEMS領域增長飛快的產品正在受到廣泛的關注與研究。FBAR具有尺寸小(μm級)、諧振頻率高(GHz)、品質因數高(1000)、功率容量大、滾降效應好等優(yōu)良特性,其濾波器正在逐步取代傳統的聲表面波(SAW)濾波器和陶瓷濾波器,在無線通信射頻領域發(fā)揮巨大作用,其高靈敏度的優(yōu)勢也能應用到生物、物理、醫(yī)學等傳感領域。本文基于FBAR的基本結構,優(yōu)化了背刻蝕型FBAR的工藝流程,以石墨烯作為電極制備新型的FBAR,器件具有優(yōu)異的諧振性能,并以PI為基底制備了 FBAR磁性傳感器,還在柔性玻璃上實現了 FBAR的柔性透明化。主要的研究內容和成果如下:1、研究了背刻蝕FBAR的工藝與不同器件結構。在硅基底上制備了高c軸生長的氧化鋅薄膜,表征其薄膜質量,優(yōu)化刻蝕工藝提高了 FBAR背刻蝕器件的成品率。在薄氧化硅的硅片上制備了金為電極的FBAR器件,通過優(yōu)化電極形狀提升了器件性能,所制備的FBAR器件諧振頻率為1.672GHz,Q值優(yōu)化到1672的超高值。同時在厚氧化硅硅片上制備了鋁為電極的FBAR器件,與薄氧化層器件相比具有諧振性能較好的兩個諧振峰。2、制備了基于石墨烯電極的FBAR。進行理論仿真分析了石墨烯電極的優(yōu)勢。在背刻蝕器件的基礎上,將上電極替換為石墨烯,優(yōu)化轉移工藝與制備流程,實現了多層石墨烯及石墨片作為FBAR電極的新型器件結構,其中6-8層石墨烯器件諧振頻率1.277GHz,Q值高達650,優(yōu)于鋁電極器件,石墨片器件諧振頻率1.398GHz,Q值為350,與ITO為電極的器件性能相當。3、獲得了 PI型的磁性FBAR傳感器。運用COMSOL有限元仿真驗證了 PI型FBAR的理論可能性,實驗中用鎳為電極制備了 FBAR磁性傳感器,其在磁場下諧振頻率有7kHz左右的上升,提出了磁致伸縮的傳感機理并通過Mason模型進行ADS電路仿真加以驗證。4、以willow glass為襯底制備了柔性透明FBAR。研究了在柔性玻璃上的FBAR制備工藝,制備的器件在彎曲后仍有諧振性能,諧振頻率為1.77GHz,Q值為443,優(yōu)于PET與紙襯底的柔性FBAR性能,在施加壓力下,諧振頻率會有1MHz左右的較大偏移。
[Abstract]:In recent years, the huge demand of emerging consumer electronics has led to the vigorous development of the MEMS industry based on semiconductor micro-nano processing technology. Thin film bulk acoustic resonator (FBA), as a rapidly growing product in the field of MEMS, is receiving extensive attention and research. FBAR is characterized by its small size (渭 m level), high resonant frequency, high quality factor, high power capacity, good rolling effect and so on. Its filters are gradually replacing the traditional saw filters and ceramic filters, which play a great role in the radio frequency field of wireless communication. Its high sensitivity advantages can also be applied to the biological, physical, medical and other sensing fields. In this paper, based on the basic structure of FBAR, the process of back etching FBAR is optimized. The novel FBAR is fabricated with graphene as the electrode. The device has excellent resonance performance, and the FBAR magnetic sensor is fabricated on Pi substrate. The flexible transparency of FBAR is also realized on the flexible glass. The main research contents and results are as follows: 1. The technology and structure of FBAR are studied. Zinc oxide thin films with high c-axis growth were prepared on silicon substrates. The quality of ZnO films was characterized and the yield of FBAR back etching devices was improved by optimizing the etching process. Gold electrode FBAR devices were fabricated on silicon wafers with thin silicon oxide. By optimizing the electrode shape, the device performance was improved. The resonant frequency of the fabricated FBAR devices was optimized to a high value of 1672, with a resonant frequency of 1.672 GHz. At the same time, FBAR devices with aluminum as electrode were fabricated on thick silicon oxide wafer. Compared with thin oxide devices, there were two resonance peaks of the devices with better resonance performance. FBA based on graphene electrode was prepared. The advantage of graphene electrode was analyzed by theoretical simulation. On the basis of the back etching device, the upper electrode was replaced with graphene, and the transfer process and preparation process were optimized. The multilayer graphene and graphite sheet were realized as the new device structure of FBAR electrode. The resonant frequency of 6-8 layer graphene device is as high as 650, which is higher than that of aluminum electrode device. The resonant frequency of graphite chip device is 350, which is equivalent to that of ITO. A Pi type magnetic FBAR sensor is obtained. The theoretical possibility of Pi type FBAR is verified by COMSOL finite element simulation. In the experiment, the FBAR magnetic sensor is fabricated with nickel electrode. The resonance frequency of the sensor increases with the increase of 7kHz in the magnetic field. The sensing mechanism of magnetostriction is proposed and verified by ADS circuit simulation with Mason model. The flexible transparent FBA is fabricated on willow glass substrate. The fabrication process of FBAR on flexible glass is studied. The resonant frequency is 1.77 GHz / Q = 443, which is superior to the flexible FBAR performance of PET and paper substrate. Under the applied pressure, the resonant frequency of the device has a large deviation of 1MHz or so.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN751.2
【參考文獻】
相關期刊論文 前2條
1 趙宏錦,劉建設,任天令,劉燕翔,劉理天,李志堅;硅基PZT薄膜的制備與刻蝕工藝研究[J];壓電與聲光;2001年04期
2 董樹榮;王德苗;;FBAR用AlN薄膜的射頻反應濺射制備研究[J];真空科學與技術學報;2006年02期
相關會議論文 前1條
1 石哲;王德苗;董樹榮;;基于FBAR技術的A1N薄膜的研究[A];TFC'05全國薄膜技術學術研討會論文摘要集[C];2005年
相關博士學位論文 前1條
1 金浩;薄膜體聲波諧振器(FBAR)技術的若干問題研究[D];浙江大學;2006年
相關碩士學位論文 前10條
1 胡娜娜;FBAR及其紫外傳感器的研究[D];浙江大學;2015年
2 朱琦;基于ZnO壓電薄膜側向場激勵薄膜體聲波諧振器的研究[D];浙江大學;2014年
3 金鵬程;FBAR制備及應用研究[D];浙江大學;2013年
4 吳夢軍;FBAR及其振蕩器的研究[D];浙江大學;2012年
5 劉興;具有主動控制功能的薄膜體聲波傳感器掃頻激勵源研究[D];重慶大學;2011年
6 杜鵬飛;AIN薄膜體聲波質量傳感器的研究[D];湖北大學;2011年
7 張慧金;FBAR器件模型和若干應用技術的研究[D];浙江大學;2011年
8 張大為;FBAR振蕩器的研究與應用[D];江南大學;2009年
9 寧金葉;FBAR用AlN薄膜的MOCVD制備[D];電子科技大學;2009年
10 陳海賓;用于FBAR的PZT薄膜制備研究[D];浙江大學;2006年
,本文編號:1827278
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1827278.html