硅基APD近紫外探測增強的結構優(yōu)化研究
發(fā)布時間:2018-04-19 14:40
本文選題:Si-APD + 摻雜結構。 參考:《哈爾濱工業(yè)大學》2015年碩士論文
【摘要】:在光電探測領域,硅基雪崩光電二極管(Si-APD)一直以其高增益、低噪聲、響應速度快而被廣為應用。但隨著近紫外天文學與氣象學、近紫外通訊與制導等方面的快速發(fā)展,Si-APD在紫光區(qū)域較低的靈敏度一直制約了其在近紫外探測領域的發(fā)展。本論文從APD分層結構的摻雜分布、幾何參數(shù)與APD表面的膜系統(tǒng)兩方面來分析影響Si-APD紫光區(qū)域探測靈敏度的因素。首先在典型的吸收場控倍增分離(SACM)型APD的結構模型下,推導了各層電場強度分布,并得到了與增益系數(shù)和擊穿電壓的關系;接著從光吸收理論出發(fā),探究了從入射光子一直到產(chǎn)生雪崩電流的微觀行為,并得到了非光敏感層厚度是制約其近紫外光探測靈敏度的結論;然后通過分層計算的方式得到了各層分別對量子效率的貢獻;另外本文通過菲涅爾原理推導了表面增透膜滿足的條件并創(chuàng)新性的在Si-APD表面鍍折射率高低相間排布的多層膜系統(tǒng),在保證透過率的同時達到了光學選頻的目的。然后通過Matlab計算得到了400nm處35.0%的量子效率時的最優(yōu)摻雜分布。最后通過Silvaco建立Si-APD器件結構模型仿真,通過優(yōu)化工藝流程得到與優(yōu)化結構近似的優(yōu)化模型,得到優(yōu)化結構的探測靈敏度250A/W(406nm),比初始結構的探測靈敏度18.9A/W(400nm)提高了12.2倍。流片測試結果為406nm時80.3A/W的探測靈敏度,進一步證實了優(yōu)化方案的可行性。
[Abstract]:Silicon based avalanche photodiode (Si-APD) has been widely used in the field of photoelectric detection because of its high gain, low noise and fast response speed.However, with the rapid development of near ultraviolet astronomy and meteorology, near ultraviolet communication and guidance, the low sensitivity of Si-APD in the ultraviolet region has been restricting its development in the field of near ultraviolet detection.In this paper, the factors that influence the detection sensitivity of APD are analyzed from the aspects of doping distribution, geometric parameters and the film system of APD surface.Firstly, the electric field intensity distribution of each layer is deduced under the typical absorption field controlled multiplication separation (APD) structure model, and the relation with gain coefficient and breakdown voltage is obtained, and then, based on the optical absorption theory, the electric field intensity distribution of each layer is derived.The microscopic behavior from incident photon to avalanche current is investigated, and the conclusion that the thickness of non-light sensitive layer restricts the sensitivity of near-ultraviolet detection is obtained.Then the contribution of each layer to quantum efficiency is obtained by delamination calculation. In addition, the Fresnel principle is used to deduce the condition of surface antireflection film and to create a multilayer system of coating refractive index between high and low phases on the surface of Si-APD.The optical frequency selection is achieved at the same time as the transmittance is guaranteed.Then the optimal doping distribution at 35.0% quantum efficiency at 400nm is obtained by Matlab calculation.Finally, the structure model of Si-APD device is simulated by Silvaco, and the optimization model is obtained by optimizing the process flow. The detection sensitivity of the optimized structure is 250A / W / W 406nmM, which is 12.2 times higher than that of the initial structure (18.9 A / W / W 400nm).The detection sensitivity of 80.3A/W when the flow sheet test result is 406nm further proves the feasibility of the optimized scheme.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TN23
【參考文獻】
相關期刊論文 前2條
1 武興建,吳金宏;光電倍增管原理、特性與應用[J];國外電子元器件;2001年08期
2 雷勇;石宏彪;陸海;陳敦軍;張榮;鄭有p,
本文編號:1773506
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1773506.html
教材專著