F類Doherty功率放大器及毫米波天線研究
本文選題:F類 + Doherty功放; 參考:《杭州電子科技大學(xué)》2017年碩士論文
【摘要】:功率放大器廣泛應(yīng)用于移動(dòng)無(wú)線通信、航天軍事、雷達(dá)衛(wèi)星等領(lǐng)域,在通信基站中發(fā)揮著尤為重要的作用。功放的工作效率提升將有助于降低散熱成本,正是這種應(yīng)用需求很大程度上推動(dòng)了對(duì)更高效率的功率放大器的研究進(jìn)展。本文正是基于成熟的Doherty技術(shù),結(jié)合最新的高效F類功放技術(shù)進(jìn)行了F類Doherty功率放大器的設(shè)計(jì)。同時(shí)為迎合未來(lái)5 G通信高頻段、大帶寬、高速率傳輸?shù)男枨?本文還仿真設(shè)計(jì)了一款LTCC毫米波微帶陣列天線。論文首先進(jìn)行了大量文獻(xiàn)資料的查閱,對(duì)于近些年國(guó)內(nèi)外F類以及Doherty功率放大器取得的成果和最新發(fā)展動(dòng)態(tài)進(jìn)行總結(jié)歸納,同時(shí)也對(duì)近幾年國(guó)內(nèi)外毫米波微帶陣列天線的研究動(dòng)態(tài)和發(fā)展前景進(jìn)行了整理和簡(jiǎn)單介紹。其次介紹了F類功率放大器的基礎(chǔ)理論,詳細(xì)闡述了平坦化電壓和電流波形的數(shù)學(xué)推導(dǎo),對(duì)兩種比較常用的諧波網(wǎng)絡(luò)設(shè)計(jì)方式進(jìn)行了簡(jiǎn)單介紹和對(duì)比分析,同時(shí)對(duì)Doherty功放的相關(guān)理論和工作狀態(tài)也進(jìn)行了較為詳細(xì)的介紹,為后面功率放大器設(shè)計(jì)方案的選取提供了理論支持。然后仿真設(shè)計(jì)并制作了工作于1.7~1.9GHz的F類Doherty功率放大電路。采用了Cree半導(dǎo)體公司的GaN晶體管CGH 40010F,主功放工作在F類,輔功放工作在C類,采用兩路對(duì)稱結(jié)構(gòu)。最終的測(cè)試結(jié)果表明,1.7~1.9GHz頻帶飽和輸出功率不小于43dBm,漏極平均效率高于70%,同時(shí)回退后的效率也在50%以上,相對(duì)傳統(tǒng)Doherty功放的效率有很大提升。毫米波微帶天線是未來(lái)5G天線的發(fā)展趨勢(shì)。查閱了相關(guān)的資料,簡(jiǎn)單介紹了微帶天線的工作原理及其特性參數(shù)、分析方法、饋電方式。然后仿真設(shè)計(jì)了60GHz的毫米波微帶陣列天線,設(shè)計(jì)了一款4×4天線陣,選用縫隙耦合饋電技術(shù)進(jìn)行單元設(shè)計(jì),采用LTCC工藝封裝。使用HFSS對(duì)天線陣進(jìn)行了仿真,仿真結(jié)果表明在58~62GHz范圍內(nèi),反射系數(shù)S11-15dB,平均增益G_a13dBi。
[Abstract]:Power amplifiers are widely used in mobile wireless communications, aerospace military, radar satellites and other fields, which play a particularly important role in communication base stations.The improvement of the efficiency of power amplifier will help to reduce the cost of heat dissipation. It is the demand of this kind of application that promotes the research progress of more efficient power amplifier to a great extent.In this paper, based on the mature Doherty technology and the latest F class power amplifier technology, the design of F class Doherty power amplifier is carried out.In order to meet the demand of high frequency band, large bandwidth and high rate transmission in 5G communication in the future, a LTCC millimeter wave microstrip array antenna is designed and simulated in this paper.Firstly, a lot of literature is consulted, and the achievements and latest developments of class F and Doherty power amplifiers at home and abroad in recent years are summarized and summarized.At the same time, the research trends and development prospects of millimeter wave microstrip array antennas at home and abroad in recent years are summarized and briefly introduced.Secondly, the basic theory of class F power amplifier is introduced, and the mathematical derivation of flattened voltage and current waveforms is described in detail. Two common harmonic network design methods are briefly introduced and compared.At the same time, the related theory and working state of Doherty power amplifier are introduced in detail, which provides theoretical support for the selection of the design scheme of the power amplifier.Then the F class Doherty power amplifier circuit working in 1.7~1.9GHz is designed and fabricated.The GaN transistor CGH 40010F of Cree Semiconductor Company is adopted. The main power amplifier works in Class F and the auxiliary amplifier works in Class C with a two-way symmetrical structure.The final test results show that the saturation output power of 1.7g 1.9GHz band is not less than 43dBm, the average drain efficiency is more than 70dBm, and the efficiency of returning back is more than 50%, which is greatly improved compared with the traditional Doherty power amplifier.Millimeter wave microstrip antenna is the development trend of 5 G antenna in the future.The working principle, characteristic parameters, analysis method and feed mode of microstrip antenna are briefly introduced.Then the millimeter-wave microstrip array antenna of 60GHz is simulated and a 4 脳 4 antenna array is designed. The slot coupling feed technology is used to design the unit and the LTCC process is used to package the antenna.The antenna array is simulated by HFSS. The simulation results show that in the range of 58~62GHz, the reflection coefficient S11-15dB, the average gain Ga13dBi.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN722.75;TN822
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭耀華;林俊明;陳思弟;章國(guó)豪;;一種高效率F類功率放大器芯片的設(shè)計(jì)[J];微電子學(xué);2016年02期
2 于慧娟;;毫米波微帶天線陣列設(shè)計(jì)[J];電子元件與材料;2016年04期
3 馮保良;高建蓉;李在清;;寬帶Doherty功率放大器的理論和設(shè)計(jì)[J];電子信息對(duì)抗技術(shù);2016年02期
4 宋立眾;聶玉明;段舒雅;;一種電磁耦合饋電雙極化毫米波微帶天線設(shè)計(jì)[J];哈爾濱工業(yè)大學(xué)學(xué)報(bào);2015年11期
5 周鵬;王建利;鄔海峰;;2.65GHz雙級(jí)高效、高增益F類開(kāi)關(guān)功率放大器設(shè)計(jì)[J];中興通訊技術(shù);2014年03期
6 孫世滔;蔡斐;李川;呂國(guó)強(qiáng);;GaN HEMT非線性輸出電容寄生參數(shù)研究[J];電子器件;2013年06期
7 方楊;南敬昌;王鑫;;一種非對(duì)稱Doherty功率放大器設(shè)計(jì)[J];微電子學(xué);2013年02期
8 張量;倪春;吳先良;;輸入端諧波抑制S波段高效率F類功率放大器的研究[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);2013年04期
9 胡志慧;姜永華;凌祥;;新型毫米波寬帶圓極化微帶天線陣列設(shè)計(jì)[J];微波學(xué)報(bào);2013年01期
10 楊崢崢;;微帶功分器的設(shè)計(jì)[J];艦船電子對(duì)抗;2012年04期
相關(guān)碩士學(xué)位論文 前6條
1 郭鵬良;基于雙阻抗匹配網(wǎng)絡(luò)的寬帶Doherty功率放大器研究[D];江蘇大學(xué);2016年
2 張運(yùn);基于實(shí)頻技術(shù)1.6-2.4GHz F類功放的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2015年
3 欒雅;帶隔離器的GaN HEMT寬帶功率放大器[D];杭州電子科技大學(xué);2015年
4 喬克;Doherty射頻功率放大器的研究[D];電子科技大學(xué);2014年
5 甘靜嫻;基于SIR結(jié)構(gòu)諧波控制電路的F類功率放大器設(shè)計(jì)[D];南京理工大學(xué);2014年
6 何金來(lái);2.6~2.7GHz高效率Doherty高效率放大器的研究與設(shè)計(jì)[D];北京郵電大學(xué);2012年
,本文編號(hào):1742293
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1742293.html