基于真空紫外光表面活化的硅基晶圓低溫直接鍵合研究
發(fā)布時間:2018-03-23 06:07
本文選題:低溫鍵合 切入點:硅基材料 出處:《哈爾濱工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來集成電路器件的特征尺寸日益接近摩爾定律的物理極限,電子/光學(xué)/生物醫(yī)療器件的多功能芯片集成變?yōu)樾滦碗娮赢a(chǎn)品的關(guān)鍵推動力。鍵合(又稱為“連接”)工藝是整合多元化復(fù)雜系統(tǒng)的不可替代的重要環(huán)節(jié)。晶圓直接鍵合可以使得經(jīng)過拋光的半導(dǎo)體晶圓在不使用粘結(jié)劑的情況下結(jié)合在一起,在集成電路制造、微機電系統(tǒng)(MEMS)封裝和多功能芯片集成等領(lǐng)域發(fā)揮著關(guān)鍵的作用。對于傳統(tǒng)的直接鍵合由于引入高溫,引起熱應(yīng)力以及熱應(yīng)變等問題。等離子體法以及超高真空鍵合方法等雖然實現(xiàn)低溫鍵合,但是具有對材料表面損傷大,鍵合設(shè)備昂貴等不足。因此亟待開發(fā)出一種低成本、簡單易行、鍵合缺陷少、綠色環(huán)保的低溫晶圓鍵合方法。本文提出一種基于真空紫外光(VUV)表面活化的硅基晶圓低溫直接鍵合方法,開發(fā)出實現(xiàn)真空紫外光活化晶圓表面實現(xiàn)低溫直接鍵合的裝置,選取光照時間,環(huán)境濕度,退火溫度作為工藝參數(shù)變量,有效鍵合面積和鍵合強度作為評價鍵合質(zhì)量的依據(jù),最終得到實現(xiàn)硅/石英玻璃,石英玻璃/石英玻璃的低溫直接鍵合的最佳工藝參數(shù);進(jìn)而結(jié)合真空紫外光對材料表面影響的分析結(jié)果和對鍵合界面的表征結(jié)果建立鍵合機理模型。研究結(jié)果表明:開發(fā)出的真空紫外光活化晶圓表面鍵合裝置具有臭氧消除功能和光照氣氛控制功能。在工藝參數(shù)為VUV光照時間15min,鍵合氣氛相對濕度30%~40%,階梯式退火方式,最高退火溫度為200℃條件下,可實現(xiàn)非潔凈間環(huán)境下硅基晶圓直接鍵合。硅/石英玻璃鍵合下有效鍵合面積高達(dá)90%以上,退火后鍵合界面強度高于基體抗彎強度。石英玻璃/石英玻璃鍵合下有效鍵合面積接近100%,退火后鍵合接頭強度達(dá)到6MPa,同時保持良好的透光率。對硅/石英玻璃,石英玻璃/石英玻璃鍵合界面進(jìn)行TEM分析得出,鍵合界面連續(xù)無孔隙,實現(xiàn)了原子間連接。通過對光照前后材料表面變化分析,得出極短波長的真空紫外光(172 nm)可以有效去除硅基晶圓表面污染物,使材料表面Si-OH增多,提高表面活性。與此同時,進(jìn)一步分析真空紫外光照射氣氛所引入水蒸氣的作用,得出適量水蒸氣,可以提供大量自由羥基基團(tuán),同時在待鍵合界面通過氫鍵連接形成“水橋”實現(xiàn)室溫鍵合;谡婵兆贤夤鈱Σ牧媳砻娴南嗷プ饔靡约八畱(yīng)力腐蝕理論,建立了應(yīng)用真空紫外光處理硅基晶圓表面低溫直接鍵合模型。室溫鍵合階段,待鍵合界面間形成通過水橋進(jìn)行連接,鍵合間隙由水分子填充,此階段范德華力和氫鍵作為界面間主要吸引力實現(xiàn)預(yù)鍵合;退火過程階段,鍵合界面間發(fā)生脫水反應(yīng)生成大量共價鍵,處于間隙部位的水分子,一部分會沿著界面進(jìn)行擴散平整表面,一部分向基體發(fā)生擴散使表層軟化,鍵合孔隙逐漸消失,最終實現(xiàn)高強度鍵合。
[Abstract]:In recent years, the characteristic size of integrated circuit devices is closer to the physical limit of Moore's law. The multifunctional chip integration of electronic / optical / biomedical devices has become a key driving force for new electronic products. Bonding (also known as "connection") process is an irreplaceable and important part of the integration of complex and diverse systems. Wafers. Direct bonding allows polished semiconductor wafers to be bonded together without the use of binders, It plays a key role in IC manufacturing, MEMS packaging and multifunctional chip integration. Although the plasma method and the ultra-high vacuum bonding method realize the low temperature bonding, they have many disadvantages, such as large damage to the material surface, expensive bonding equipment and so on. Therefore, it is urgent to develop a kind of low cost. This paper presents a low temperature direct bonding method for silicon wafers based on the surface activation of vacuum ultraviolet light (VUV). A device for realizing direct bonding at low temperature on the surface of a wafer by vacuum ultraviolet light was developed. The parameters such as illumination time, ambient humidity, annealing temperature were selected as parameters, and the effective bonding area and bonding strength were used as the basis for the evaluation of bonding quality. Finally, the optimum process parameters for direct bonding of silicon / quartz glass and quartz glass and quartz glass at low temperature are obtained. Furthermore, a bonding mechanism model was established based on the results of the analysis of the effect of vacuum ultraviolet light on the surface of the material and the characterization of the bonding interface. The results show that the vacuum ultraviolet light activated wafer surface bonding device has the odor. Oxygen elimination function and illumination atmosphere control function. When the process parameters are VUV illumination time 15 minutes, the bonding atmosphere relative humidity 30 and 40, step annealing, Under the maximum annealing temperature of 200 鈩,
本文編號:1652206
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1652206.html
最近更新
教材專著