硅基毫米波Ka波段全RF相控陣接收前端芯片的研究與設(shè)計(jì)
發(fā)布時(shí)間:2018-03-15 06:20
本文選題:CMOS 切入點(diǎn):Ka波段 出處:《華東師范大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:毫米波由于其寬帶寬,較少的干擾和較高的方向性,在無線通信領(lǐng)域已經(jīng)吸引了許多應(yīng)用開發(fā)的興趣,例如雷達(dá),傳感器和無線局域網(wǎng)等。特別地,對(duì)在30GHz附近Ka波段的毫米波電路的應(yīng)用和研究已經(jīng)越來越得到學(xué)術(shù)界和工業(yè)界的重視。硅基CMOS工藝由于其集成度高和生產(chǎn)成本低,隨著工藝一代一代的進(jìn)步的,在毫米波電路設(shè)計(jì)中也越來越多的被使用。然而無限追求頻譜資源的發(fā)掘其作用最終是有限的,所以可以使用空間方法來提高數(shù)據(jù)速率。相控陣系統(tǒng)廣泛應(yīng)用于雷達(dá)和通信系統(tǒng)的波束成形和掃描。接收或發(fā)射信號(hào)的相對(duì)相位由相控陣系統(tǒng)控制,將天線陣列的有效輻射模式引導(dǎo)到特定方向,在期望方向上加強(qiáng)信號(hào)并在不期望方向上抑制信號(hào)。本文基于IBM 0.13μm CMOS工藝設(shè)計(jì)了一款工作在Ka波段的全RF結(jié)構(gòu)的四路相控陣接收前端電路,主要涉及的工作有:1.設(shè)計(jì)了一個(gè)工作頻帶在27GHz~29GHz的Ka波段毫米波低噪聲放大器,放大器結(jié)構(gòu)為兩級(jí)單端共源共柵拓?fù)浣Y(jié)構(gòu),并使用源端負(fù)反饋電感進(jìn)行輸入匹配,使用了共柵管柵端串聯(lián)共面波導(dǎo)線代替電感作為電流復(fù)用技術(shù)的方法改善了增益性能。在TT工藝角,室溫下取得的峰值增益S21=23dB,最小NF=4.8dB,頻段內(nèi) Sll-10 dB,S22-10 dB,S12-45dB。2.設(shè)計(jì)了一個(gè)工作在27GHz~28.5GHz的4比特毫米波無源移相器,使用LC-開關(guān)型結(jié)構(gòu)中的Ⅱ型低通網(wǎng)路作為設(shè)計(jì)基礎(chǔ),共設(shè)計(jì)了可相移22.5度、45度、90度和180度四個(gè)基本移相器。串聯(lián)這四個(gè)基本移相器單元,可以完成從0度到360度的以分辨率為22.5度的相移工作。中心頻率27.7GHz處,RMS插損值為1.5dB,在整個(gè)頻段內(nèi)都小于1.8dB,在整體工作頻段內(nèi)RMS相移誤差都小于11度。3.設(shè)計(jì)了一個(gè)兩級(jí)4:1片上威爾金森功率合成器,其中傳輸線使用片上共面波導(dǎo)線,使用頂層金屬減小損耗,并使用電磁場(chǎng)仿真工具抽取電磁場(chǎng)參數(shù)以供整體電路后仿真使用。4.設(shè)計(jì)了 一個(gè)工作在27.5GHz~28.5GHz的Ka波段單路接收前端相控單元,包括低噪聲放大器,4比特?zé)o源移相器,增益補(bǔ)償放大器。RMS增益誤差在中心頻率處為2dB,在整體工作頻段內(nèi)都小于3 dB。RMS相位誤差在整體工作頻段內(nèi)小于15度,已送廠流片。在此單路相控單元基礎(chǔ)上,設(shè)計(jì)了工作在Ka波段27.5GHz~28.5GHz的全RF結(jié)構(gòu)的相控陣接收前端電路,四路接收前端由威爾金森合成器進(jìn)行信號(hào)求和。四路單元具有良好的相位和增益一致性。
[Abstract]:Because of its wide bandwidth, less interference and high directivity, millimeter-wave has attracted a lot of interest in the field of wireless communication, such as radar, sensors and wireless local area networks. More and more attention has been paid to the application and research of millimeter wave circuits in Ka-band near 30GHz. Due to its high integration and low production cost, the silicon-based CMOS process has been developed with the progress of the process generation. Millimeter-wave circuits are increasingly being used in the design of millimeter-wave circuits. However, the infinite pursuit of spectrum resources is ultimately of limited use. So we can use space methods to improve the data rate. Phased array systems are widely used in beamforming and scanning of radar and communication systems. The relative phase of received or transmitted signals is controlled by phased array systems. Guiding the effective radiation mode of the antenna array in a particular direction, The signal is strengthened in the desired direction and suppressed in the undesired direction. Based on the IBM 0.13 渭 m CMOS process, a four-channel phased array front-end circuit operating in the Ka-band full-RF structure is designed in this paper. The main work involved is: 1. A Ka-band millimeter-wave low-noise amplifier with a working frequency band of 27GHz or 29GHz is designed. The amplifier structure is a two-stage single-ended common-grid topology with negative feedback inductors at the source end for input matching. The gain performance is improved by using a series coplanar wave conductor at the gate end of a common gate instead of an inductor as a current multiplexing technique. The peak gain at room temperature is S21 ~ (23) dB, the minimum is 4.8dB, and the frequency band is Sll-10 DBA _ (22-10) dB ~ (12) ~ (45) dB.2. A 4-bit millimeter-wave passive phase shifter working at 27GHz is designed. The design is based on the type 鈪,
本文編號(hào):1614811
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1614811.html
最近更新
教材專著