利用半絕緣砷化鎵體雪崩產(chǎn)生高壓高重頻納秒電脈沖的研究
發(fā)布時(shí)間:2018-03-14 06:22
本文選題:高重頻脈沖 切入點(diǎn):深能級(jí) 出處:《西安理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:脈沖功率技術(shù)是利用開關(guān)或儲(chǔ)能器件對(duì)一定時(shí)間寬度的能量進(jìn)行壓縮,輸出高功率短脈沖的技術(shù)。因此,如何提高輸出脈沖的功率和壓縮脈寬是脈沖功率技術(shù)的關(guān)鍵。開關(guān)技術(shù)是脈沖功率技術(shù)的關(guān)鍵環(huán)節(jié),高重復(fù)頻率、全固態(tài)和小型化是當(dāng)前開關(guān)技術(shù)的主流發(fā)展趨勢;贕aAs光電導(dǎo)開關(guān)非線性延遲模式的實(shí)驗(yàn)現(xiàn)象,我們提出了利用雪崩觸發(fā)半絕緣GaAs導(dǎo)通的研究思路。利用雪崩觸發(fā)半絕緣GaAs導(dǎo)通,能夠讓GaAs光電導(dǎo)開關(guān)擺脫激光限制,實(shí)現(xiàn)一種新型的高壓雪崩管。通過對(duì)電極形狀的優(yōu)化設(shè)計(jì),我們?cè)诎虢^緣GaAs材料上制作非對(duì)稱尖端電極,形成實(shí)驗(yàn)樣品。實(shí)驗(yàn)表明這種樣品能夠利用直接施加高壓,局部雪崩的方式觸發(fā)導(dǎo)通。導(dǎo)通后半絕緣GaAs樣品能夠像光電導(dǎo)開關(guān)非線性模式一樣持續(xù)導(dǎo)通,并伴隨樣品電場鎖定。在此基礎(chǔ)上,論文開展了利用半絕緣GaAs體雪崩產(chǎn)生高重頻納秒脈沖的實(shí)驗(yàn)研究,完成了以下工作:1.在半絕緣GaAs樣品上制備非對(duì)稱電極形成實(shí)驗(yàn)樣品。在對(duì)樣品的靜態(tài)伏安特性測定的基礎(chǔ)上,利用電容儲(chǔ)能測試電路,測試了體雪崩樣品脈沖輸出特性,產(chǎn)生了脈沖寬度為5.5ns,1.9kV的單發(fā)高壓電脈沖。2.根據(jù)半絕緣GaAs體雪崩樣品的伏安特性,設(shè)計(jì)了基于高壓交流電源的高重頻運(yùn)行實(shí)驗(yàn)方案,開展了雪崩樣品在交流電源下的重頻實(shí)驗(yàn)研究。在兩種不同的供電模式中,分別產(chǎn)生了脈沖寬度493.8ns,幅值5.92kV,頻率52.2kHz和脈寬243ns,幅值4.39kV,頻率40kHz的電脈沖。3.測定了高溫下GaAs雪崩樣品的伏安特性,發(fā)現(xiàn)高溫下樣品呈現(xiàn)顯著的電流控制型負(fù)阻特性。與室溫下的伏安特性不同的是,高溫下樣品電場鎖定特性消失,無論是升壓過程還是降壓過程,樣品均表現(xiàn)出負(fù)阻特性,其負(fù)阻數(shù)值隨溫度升高而降低,在70℃時(shí)高達(dá)2.4MΩ。根據(jù)樣品表現(xiàn)出的高溫負(fù)阻特性,解釋了高重頻模式下電流尖峰的形成機(jī)理。半絕緣GaAs體雪崩產(chǎn)生重頻脈沖,是一種新型產(chǎn)生高重頻脈沖的方法,有望以雪崩的模式,實(shí)現(xiàn)幾十kHz高壓納秒重頻脈沖。對(duì)半絕緣GaAs體雪崩現(xiàn)象的深入研究將為固態(tài)開關(guān)領(lǐng)域注入新活力。
[Abstract]:Pulse power technology is the technology that uses switch or energy storage device to compress the energy of certain time width and output high power short pulse. How to increase the output pulse power and compression pulse width is the key of pulse power technology, switch technology is the key link of pulse power technology, high repetition rate, All solid state and miniaturization are the main trend of switch technology. Based on the experimental phenomenon of nonlinear delay mode of GaAs photoconductive switch, We put forward the idea of using avalanche to trigger semi-insulating GaAs conduction. By using avalanche to trigger semi-insulating GaAs conduction, the GaAs photoconductive switch can get rid of laser limitation. A new type of high voltage avalanche tube is realized. By optimizing the shape of the electrode, we fabricate the asymmetric tip electrode on the semi-insulating GaAs material and form the experimental sample. The experiment shows that this kind of sample can be directly applied to the high voltage. The local avalanche triggers the conduction. The semi-insulating GaAs sample after conduction can be continuously switched on like the nonlinear mode of the photoconductive switch, with the sample electric field locked. On this basis, In this paper, an experimental study on the generation of nanosecond pulse with high repetition frequency by using semi-insulating GaAs body avalanche has been carried out. The following work has been done: 1. The asymmetric electrode was prepared on the semi-insulating GaAs sample to form the experimental sample. Based on the determination of the static voltammetric characteristics of the sample, The pulse output characteristics of bulk avalanche samples were tested by using the capacitance energy storage test circuit. The pulse width of 5.5nsL 1.9kV single high-voltage electric pulse was obtained. According to the volt-ampere characteristics of semi-insulating GaAs body avalanche samples, The experimental scheme of high repetition frequency operation based on high voltage AC power supply is designed, and the experimental research on the repetition rate of avalanche sample under AC power supply is carried out. In two different power supply modes, The pulse width is 493.8ns, the amplitude is 5.92kV, the frequency is 52.2 kHz, the pulse width is 243ns, the amplitude is 4.39kV, the frequency is 40kHz. The volt-ampere characteristics of GaAs avalanche samples at high temperature are measured. It is found that at high temperature, the sample exhibits a significant current-controlled negative resistance, which is different from the volt-ampere characteristic at room temperature. The electric field locking characteristic of the sample disappears at high temperature, and the sample exhibits negative resistance whether in the process of booster or in the process of lowering the voltage. The value of negative resistance decreases with the increase of temperature and reaches 2.4 M 惟 at 70 鈩,
本文編號(hào):1610023
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1610023.html
最近更新
教材專著