材料介電參數(shù)準(zhǔn)光腔法低溫測(cè)試技術(shù)研究
本文選題:準(zhǔn)光學(xué)諧振腔 切入點(diǎn):復(fù)介電常數(shù) 出處:《電子科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著微波毫米波技術(shù)的快速發(fā)展,介質(zhì)材料被廣泛應(yīng)用,對(duì)介質(zhì)材料介電參數(shù)的準(zhǔn)確測(cè)量也變得越來(lái)越重要。介質(zhì)材料的介電參數(shù)與頻率和溫度有著密切的關(guān)系,在不同工作頻率和工作環(huán)境下,材料會(huì)呈現(xiàn)出不一樣的電磁特性。隨著微波設(shè)備應(yīng)用的頻率越來(lái)越高、應(yīng)用的環(huán)境越來(lái)越惡劣,環(huán)境溫度甚至達(dá)到零下幾十?dāng)z氏度,因此建立一套能夠在高頻,低溫環(huán)境下對(duì)材料介電參數(shù)進(jìn)行準(zhǔn)確測(cè)試的測(cè)試系統(tǒng)變得越來(lái)越重要。首先,文章介紹了國(guó)內(nèi)外關(guān)于材料介電參數(shù)變溫測(cè)試技術(shù)的進(jìn)展,并通過(guò)比較不同測(cè)試方法的優(yōu)缺點(diǎn),最終將準(zhǔn)光腔法作為本文的測(cè)試方法。其次,文章對(duì)準(zhǔn)光學(xué)諧振腔進(jìn)行理論分析,并通過(guò)MATLAB對(duì)準(zhǔn)光學(xué)諧振腔內(nèi)部的電場(chǎng)和能量分布進(jìn)行模擬,同時(shí)對(duì)材料介電參數(shù)的測(cè)試原理進(jìn)行了詳細(xì)介紹;诶碚摲治,設(shè)計(jì)了可以同時(shí)工作于3mm、8mm兩個(gè)頻段的準(zhǔn)光學(xué)諧振腔。利用搭建的系統(tǒng)在真空和非真空狀態(tài)下對(duì)材料進(jìn)行了測(cè)試,并通過(guò)數(shù)據(jù)分析了溫度、結(jié)霜度對(duì)準(zhǔn)光腔性能的影響。為了消除這些影響,對(duì)準(zhǔn)光腔腔體進(jìn)行結(jié)構(gòu)改進(jìn)并研制了密封裝置和測(cè)試夾具,同時(shí)為了方便與外部設(shè)備連接,設(shè)計(jì)了與準(zhǔn)光腔相匹配的耦合裝置。再次,選用冷卻液循環(huán)制冷作為系統(tǒng)的制冷設(shè)備,通過(guò)對(duì)比不同除濕技術(shù)的優(yōu)缺點(diǎn),本文選擇半導(dǎo)體制冷除濕作為除濕方案,并研制了相應(yīng)的除濕裝置。為了實(shí)時(shí)測(cè)試,研制了加熱與溫控裝置。最后,對(duì)各個(gè)子系統(tǒng)進(jìn)行測(cè)試,最終搭建可以工作在-50~100℃的準(zhǔn)光學(xué)諧振腔變溫測(cè)試系統(tǒng),確定了測(cè)試流程并用VC++編寫(xiě)了測(cè)試軟件。利用研制的變溫測(cè)試系統(tǒng)對(duì)標(biāo)準(zhǔn)樣品進(jìn)行測(cè)試,對(duì)測(cè)試結(jié)果進(jìn)行了誤差分析。測(cè)試結(jié)果表明本文研制的變溫測(cè)試系統(tǒng)具有良好的穩(wěn)定性和實(shí)用性,可以對(duì)低損耗材料的介電參數(shù)進(jìn)行準(zhǔn)確測(cè)試。對(duì)于高損耗材料,只能在某幾個(gè)頻點(diǎn)上對(duì)材料的介電參數(shù)進(jìn)行準(zhǔn)確測(cè)試。
[Abstract]:With the rapid development of microwave and millimeter wave technology, dielectric materials are widely used, accurate measurement of the dielectric parameters has become more and more important. The dielectric permittivity and frequency and temperature are closely related, in different working frequency and the working environment, the material will exhibit different electromagnetic characteristics with the increasing frequency and microwave equipment application is high, the application environment is more and more bad, the ambient temperature below zero or even tens of degrees Celsius, so the establishment of a high frequency in low temperature environment, the dielectric parameters of material testing system for accurate testing becomes more and more important. Firstly, this paper introduces the advances on dielectric materials the electrical parameters of temperature testing technology at home and abroad, and the advantages and disadvantages of different testing methods, will eventually be quasi optical cavity method as a test method in this paper. Secondly, the alignment of optical resonator Theoretical analysis and field and energy distribution of the optical resonant cavity is simulated by MATLAB and alignment, the test principle of the dielectric parameters of the material are introduced in this paper. Based on the theoretical analysis, the design can work simultaneously in 3mm, quasi optical resonant cavity 8mm two frequency bands. The vacuum and non vacuum condition tested materials using the built system, and analyzes the influence of Frost temperature through the data, the quasi optical cavity properties. In order to eliminate these effects, the quasi optical cavity structure was improved and the development of the sealing device and test fixture, at the same time in order to facilitate the connection with external equipment, design and quasi coupling device matching the optical cavity. Thirdly, selection of cooling liquid cycle cooling system as the refrigeration equipment, through comparing the advantages and disadvantages of different desiccant technology, the semiconductor refrigeration dehumidification thedehumidifying scheme, and development The corresponding dehumidifying device. In order to test in real time, heating and temperature control device is developed. Finally, testing of each subsystem, and ultimately build quasi optical cavity temperature testing system can work at -50~100 DEG C, the testing process and test software written by VC++. Using the temperature test system to test the standard sample, the test results are analyzed. Test results show that the temperature of this testing system has good stability and practicality, can the dielectric parameters of low loss materials for accurate testing. For high loss materials, only in certain frequency on dielectric parameters of materials for accurate testing.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN04
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅仲;張旭;王勝己;李翔;;半導(dǎo)體制冷器除濕實(shí)驗(yàn)研究[J];制冷學(xué)報(bào);2015年05期
2 鄭宇薇;劉曉華;涂壤;;半導(dǎo)體制冷與固體除濕結(jié)合裝置的性能探究[J];制冷學(xué)報(bào);2013年05期
3 趙才軍;蔣全興;景莘慧;;改進(jìn)的同軸傳輸/反射法測(cè)量復(fù)介電常數(shù)[J];儀器儀表學(xué)報(bào);2011年03期
4 高源慈,余國(guó)芬,孫嘉鴻;準(zhǔn)光腔品質(zhì)因數(shù)的標(biāo)網(wǎng)測(cè)量與研究[J];強(qiáng)激光與粒子束;2004年04期
5 郭高鳳,李恩,張其劭,唐宗熙,羊愷;3mm準(zhǔn)光腔內(nèi)場(chǎng)和能量分布的模擬計(jì)算[J];電子學(xué)報(bào);2001年07期
6 許福永,趙克玉;混合物料介電常數(shù)測(cè)量的研究[J];蘭州大學(xué)學(xué)報(bào);1998年02期
7 蘭康,趙愉深,林為干;介質(zhì)材料的寬帶測(cè)試技術(shù)的研究[J];電子科技大學(xué)學(xué)報(bào);1995年02期
8 曹江;介質(zhì)材料電磁參數(shù)測(cè)量綜述[J];宇航計(jì)測(cè)技術(shù);1994年03期
9 董宏發(fā),樓仁海;開(kāi)式諧振腔Q值的計(jì)算與測(cè)量[J];北京工業(yè)學(xué)院學(xué)報(bào);1988年04期
10 褚慶昕;GENERALIZED INCREMENTAL FREQUENCY RUI E FOR COMPUTING Q-FACTOR OF A MICROWAVE RESONATOR[J];Science Bulletin;1988年09期
相關(guān)碩士學(xué)位論文 前3條
1 王修齊;高低溫環(huán)境材料復(fù)介電常數(shù)測(cè)試技術(shù)研究[D];電子科技大學(xué);2015年
2 李濤;基于矩形波導(dǎo)傳輸線的材料電磁特性測(cè)試技術(shù)[D];中北大學(xué);2014年
3 李恩;吸波材料電磁參數(shù)在X波段的變溫測(cè)試[D];電子科技大學(xué);2003年
,本文編號(hào):1575404
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1575404.html