基于超聲氧化的總氮紫外光譜檢測(cè)
發(fā)布時(shí)間:2018-02-28 17:11
本文關(guān)鍵詞: 紫外吸收光譜 超聲氧化 偏最小二乘回歸算法 總氮 出處:《燕山大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著人類社會(huì)發(fā)展進(jìn)程的日漸加快,排入海洋、河流、湖泊等水體中的生產(chǎn)廢水和生活污水逐漸增多,水體富營養(yǎng)化的程度不斷加重,而總氮含量是影響水體富營養(yǎng)化程度的主要因素。為了加強(qiáng)對(duì)污染源的總氮的排放控制,需要對(duì)水體進(jìn)行總氮含量的檢測(cè)。傳統(tǒng)的總氮檢測(cè)方法需要添加化學(xué)試劑,容易造成二次污染,且操作繁瑣,因此建立綠色環(huán)保、高效方便的總氮檢測(cè)系統(tǒng)具有重要的現(xiàn)實(shí)意義和廣闊的應(yīng)用前景。本文分別從氧化消解、干擾物質(zhì)和模型選擇等方面進(jìn)行研究,建立了水體中總氮的檢測(cè)系統(tǒng)和數(shù)據(jù)分析模型。主要研究?jī)?nèi)容如下:首先,主要介紹了紫外吸收光譜理論、化學(xué)計(jì)量學(xué)中的常用算法和超聲空化理論,闡述了多元回歸算法和偏最小二乘回歸算法的基本原理。其次,研究了海水中在紫外波段有吸收的主要物質(zhì)的光譜特征。根據(jù)海水中主要成分,實(shí)驗(yàn)研究了海水中其他物質(zhì)成分對(duì)含氮物質(zhì)紫外吸收光譜的影響,確定紫外吸收光譜法檢測(cè)海水中總氮的主要干擾物質(zhì)是氯離子和溴離子。同時(shí),在紫外波段對(duì)硝酸鹽和亞硝酸鹽進(jìn)行線性有效吸收范圍研究。再次,設(shè)計(jì)建立了基于超聲波氧化的紫外吸收光譜系統(tǒng),通過分析影響超聲空化的因素,確定了超聲空化的最佳頻率范圍,實(shí)驗(yàn)研究了氨氮溶液超聲空化的最佳反應(yīng)時(shí)間,并對(duì)總氮溶液進(jìn)行了超聲氧化消解。最后,確立了紫外吸收光譜最佳建模方法。通過在高純蒸餾水中加入不同濃度組合的四種物質(zhì),構(gòu)建校正集樣本,分別用多元線性回歸算法和偏最小二乘回歸算法建立校正模型,并進(jìn)行結(jié)果比較,最終確立偏最小二乘回歸算法為測(cè)量的最佳建模方法。
[Abstract]:With the rapid development of human society, the production wastewater and domestic sewage discharged into the sea, rivers, lakes and other water bodies are gradually increasing, and the degree of eutrophication of water bodies is becoming more and more serious. The total nitrogen content is the main factor that affects the eutrophication degree of water body. In order to strengthen the control of the total nitrogen discharge of the pollution source, the total nitrogen content of the water body needs to be detected. It is easy to cause secondary pollution, and the operation is cumbersome. Therefore, it is of great practical significance and broad application prospect to establish a green, efficient and convenient total nitrogen detection system. The system and data analysis model of total nitrogen in water are established. The main contents are as follows: firstly, the theory of ultraviolet absorption spectrum is introduced. The basic principles of multivariate regression algorithm and partial least square regression algorithm are expounded in this paper, which are commonly used in chemometrics and ultrasonic cavitation theory. The spectral characteristics of the main substances absorbed in the ultraviolet band in seawater were studied. According to the main components in seawater, the effects of other substances in seawater on the UV absorption spectra of nitrogen-containing substances were studied experimentally. It is determined that the main interfering substances for the determination of total nitrogen in seawater by ultraviolet absorption spectrometry are chloride ion and bromine ion. At the same time, the linear effective absorption range of nitrate and nitrite is studied in the ultraviolet band. The UV absorption spectrum system based on ultrasonic oxidation was designed and established. The optimum frequency range of ultrasonic cavitation was determined by analyzing the factors affecting ultrasonic cavitation. The optimum reaction time of ultrasonic cavitation in ammonia nitrogen solution was studied experimentally. Finally, the best modeling method of UV absorption spectrum was established. By adding four kinds of substances with different concentrations in high purity distilled water, the calibration set samples were constructed. The calibration model is established by multivariate linear regression algorithm and partial least square regression algorithm, and the results are compared. Finally, the partial least squares regression algorithm is established as the best modeling method for measurement.
【學(xué)位授予單位】:燕山大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:X832;TN23
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 高玲;石俊仙;任守信;;Elman回歸神經(jīng)網(wǎng)絡(luò)同時(shí)定量測(cè)定三種酚類化合物[J];光譜學(xué)與光譜分析;2006年01期
2 王建龍,柳萍,施漢昌,錢易;聲化學(xué)在水污染控制中的應(yīng)用研究現(xiàn)狀[J];化學(xué)通報(bào);1997年07期
3 王寧;王聰;哈謙;任永琴;杜軍蘭;;基于熒光法的海水氨氮測(cè)量方法研究[J];海洋技術(shù);2010年04期
4 楊迎春;;微波消解-偶氮分光光度比色法快速測(cè)定水中總氮的研究[J];河南科技;2013年23期
5 尹周瀾,張牧群,劉吉波,胡慧萍,陳啟元;茜素紫光度法檢測(cè)超聲波輻照水體系產(chǎn)生的羥自由基[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年05期
,本文編號(hào):1548205
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1548205.html
最近更新
教材專著