基于材料調(diào)節(jié)的光子晶體波導(dǎo)寬帶低色散特性研究
發(fā)布時(shí)間:2018-02-28 04:30
本文關(guān)鍵詞: 光子晶體 慢光 光波導(dǎo) 光流體 光緩存 出處:《青島大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:通信技術(shù)的發(fā)展促使人們將目光轉(zhuǎn)向了更具優(yōu)勢(shì)的光網(wǎng)絡(luò),但是目前的光網(wǎng)絡(luò)中依然保有大量的光電轉(zhuǎn)換器,網(wǎng)絡(luò)的速度受到了很大的限制,必須替換網(wǎng)絡(luò)中的電子部分,才能充分利用光的帶寬優(yōu)勢(shì)。光緩存技術(shù)是實(shí)現(xiàn)光開關(guān)、光存儲(chǔ)器等光器件的技術(shù)前提,利用這些器件實(shí)現(xiàn)的全光交換和光路由,是組成全光網(wǎng)絡(luò)的關(guān)鍵技術(shù),基于光子晶體慢光波導(dǎo)技術(shù)實(shí)現(xiàn)光緩存器的設(shè)計(jì)是目前研究的熱點(diǎn),其具有帶寬大、體積小、可集成、室溫運(yùn)行等顯著的優(yōu)勢(shì)。現(xiàn)階段的研究中,設(shè)計(jì)出的慢光波導(dǎo),被減慢的光速總伴隨著較大的群速度色散,群速度色散的存在會(huì)引起信號(hào)波形出現(xiàn)畸變,無(wú)法被正確讀取和識(shí)別。而使群速度色散降低的措施又會(huì)使帶寬連帶著降低,而且在實(shí)際應(yīng)用中,還要求光子晶體光器件具備可重配置、開關(guān)控制、動(dòng)態(tài)可調(diào)等功能。所以對(duì)波導(dǎo)慢光特性的優(yōu)化和波導(dǎo)動(dòng)態(tài)可控方面的研究具有重要的意義。本論文對(duì)光子晶體慢光波導(dǎo)的結(jié)構(gòu)進(jìn)行了設(shè)計(jì),研究了特定結(jié)構(gòu)慢光波導(dǎo)的禁帶特性和慢光特性。研究主要包含以下內(nèi)容:首先,介紹了光子晶體理論和能帶、禁帶等特性,分析了光子晶體的慢光原理和慢光性能參數(shù),介紹光子晶體理論研究的幾種主要方法,如平面波展開法、時(shí)域有限差分法等,最后介紹了研究中使用的數(shù)值仿真工具。第二,設(shè)計(jì)了一種六邊形環(huán)散射元二維光子晶體結(jié)構(gòu),設(shè)計(jì)了一種圓形散射元二維光子晶體結(jié)構(gòu)。對(duì)兩種光子晶體的能帶、禁帶特性進(jìn)行了研究。分別選取了一種結(jié)構(gòu)參量和一種材料參量,通過(guò)調(diào)整參量的取值,研究光子晶體禁帶位置和寬度的變化情況。研究結(jié)果可用于光子晶體光器件的開關(guān)控制和調(diào)諧功能的實(shí)現(xiàn)。第三,在六邊形環(huán)散射元的光子晶體中引入線缺陷,設(shè)計(jì)慢光波導(dǎo)。對(duì)波導(dǎo)的慢光特性進(jìn)行仿真,通過(guò)調(diào)整環(huán)內(nèi)光流體折射率,確定能使慢光特性最優(yōu)化的折射率值,再通過(guò)調(diào)整六邊形內(nèi)徑和光流體環(huán)的內(nèi)徑,進(jìn)一步優(yōu)化慢光特性,最后調(diào)整第一行孔的平移距離,擴(kuò)大了慢光的帶寬范圍,最終獲得了帶寬△n=92.9nm,群速度色散β2=4.86 ps2/mm的超大帶寬超小色散的慢光。最后,在圓形散射元的光子晶體中引入缺陷,形成慢光波導(dǎo),研究調(diào)整孔半徑和孔折射率時(shí),導(dǎo)模及慢光特性的變化規(guī)律。通過(guò)同時(shí)調(diào)整第一行孔的光流體折射率和第一行孔的半徑,對(duì)慢光性能進(jìn)行了優(yōu)化。在不同的折射率和半徑組合下,群折射率30到200的連續(xù)范圍上,總能獲得NDBP在0.320以上的高性能慢光。
[Abstract]:The development of communication technology has prompted people to turn their eyes to the more advantageous optical networks, but there are still a large number of photoelectric converters in the current optical networks. The speed of the network is greatly limited, and the electronic parts of the network must be replaced. Optical buffer technology is the technical premise of optical devices such as optical switch and optical memory, and all optical switching and optical routing realized by these devices is the key technology to form an all-optical network. The design of optical buffer based on photonic crystal slow optical waveguide technology is a hot research topic at present. It has many advantages, such as large bandwidth, small volume, integration, room temperature operation and so on. The slow speed of light is always accompanied by large group velocity dispersion, the existence of group velocity dispersion will cause the signal waveform distortion, which can not be read and recognized correctly, and the measures to reduce the group velocity dispersion will reduce the bandwidth. In practical applications, photonic crystal optical devices are also required to be reconfigurable and switch controlled. Therefore, it is of great significance to optimize the slow light characteristics of the waveguide and to study the dynamic control of the waveguide. In this paper, the structure of the photonic crystal slow optical waveguide is designed. The band gap and slow light characteristics of a special structure slow optical waveguide are studied. The main contents of the study are as follows: firstly, the theory of photonic crystal and the characteristics of band gap and band gap are introduced, and the principle of slow light and the parameters of slow light performance of photonic crystal are analyzed. This paper introduces several main methods for theoretical study of photonic crystals, such as plane wave expansion method, finite-difference time-domain method and so on. Finally, numerical simulation tools used in the study are introduced. Secondly, a hexagonal ring scattering element two-dimensional photonic crystal structure is designed. A two-dimensional photonic crystal structure with circular scattering elements is designed. The band band and band gap characteristics of two photonic crystals are studied. One structure parameter and one material parameter are selected, and the values of the parameters are adjusted. The change of gap position and width of photonic crystal is studied. The results can be used to realize the switch control and tuning function of photonic crystal optical device. Thirdly, the linear defect is introduced into the photonic crystal of hexagonal ring scattering element. The slow optical waveguide is designed. The slow light characteristic of the waveguide is simulated. By adjusting the refractive index of the optical fluid in the ring, the refractive index value that can optimize the slow light characteristic is determined, and then the inner diameter of the hexagonal and the optical fluid ring is adjusted. The slow light characteristics are further optimized, and the translation distance of the first row hole is adjusted to enlarge the bandwidth range of slow light. Finally, the bandwidth of slow light is 92.9 nm, and the group velocity dispersion 尾 2N 4.86 ps2/mm is very large bandwidth ultra-small dispersion slow light. Finally, By introducing defects into photonic crystals of circular scatterers to form slow optical waveguides, the variation of guiding modes and slow light properties of the first row of holes and the radius of the first row of holes are studied by adjusting the radius of the hole and the refractive index of the hole, by simultaneously adjusting the refractive index of the first row of the hole and the radius of the first line of the hole. The performance of slow light is optimized. Under different refractive index and radius combination, the high performance slow light with NDBP above 0.320 can be obtained in the continuous range of group refractive index from 30 to 200.
【學(xué)位授予單位】:青島大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN252
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 掌蘊(yùn)東;翁文;喻波;袁萍;;光子晶體波導(dǎo)慢光技術(shù)[J];激光與光電子學(xué)進(jìn)展;2007年10期
相關(guān)博士學(xué)位論文 前1條
1 郝然;基于光子晶體波導(dǎo)的寬帶、低色散、低損耗慢光的研究及制備[D];華中科技大學(xué);2010年
,本文編號(hào):1545768
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1545768.html
最近更新
教材專著