天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電子信息論文 >

基于p-型摻雜空穴傳輸層的高效綠色磷光有機(jī)電致發(fā)光器件

發(fā)布時間:2018-01-15 18:36

  本文關(guān)鍵詞:基于p-型摻雜空穴傳輸層的高效綠色磷光有機(jī)電致發(fā)光器件 出處:《太原理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: p-型摻雜 空穴傳輸層 有機(jī)半導(dǎo)體異質(zhì)結(jié) 磷光電致發(fā)光器件


【摘要】:近幾十年來,有機(jī)電致發(fā)光器件(Organic Light-emitting Devices,OLEDs)以其輕薄、柔性、低功耗和面光源等諸多優(yōu)越性能已經(jīng)成為下一代全彩顯示、固態(tài)照明的佼佼者。而OLEDs是由陰、陽電極中間夾著空穴傳輸層、發(fā)光層、電子傳輸層等有機(jī)功能層的“三明治”式結(jié)構(gòu)構(gòu)成。其中的空穴傳輸層(Hole Transporting Layer,HTL)是有機(jī)功能層的重要組成部分,其空穴傳輸性能直接決定了空穴向發(fā)光層的傳輸和注入過程,進(jìn)而影響到載流子的平衡復(fù)合,并最終影響器件的性能。然而有機(jī)空穴傳輸材料本身具有空穴遷移率偏低、導(dǎo)電性偏差以及與金屬電極接觸不良導(dǎo)致的注入勢壘偏高等諸多短板限制了器件性能的提高。而通過p-型摻雜技術(shù)將p-型摻雜劑摻雜到HTL中構(gòu)成的p-型摻雜空穴傳輸層,由于顯著地改善了HTL的空穴傳輸性能,得到廣泛應(yīng)用。為了提高基于Ir(ppy)3的綠色磷光OLEDs器件性能,本文設(shè)計了不同的p型摻雜結(jié)構(gòu)HTL,以改善器件性能。主要工作如下:1.利用p-型共摻雜結(jié)構(gòu)(CBP:Mo O_3/CBP)的HTL制備了共摻結(jié)構(gòu)(Co-evaporating Structure,CS)以及混合共摻結(jié)構(gòu)(Mixed Structure,MS)綠色磷光OLEDs。首先優(yōu)化了CS器件,基于20nm摻雜層厚度和50%摻雜濃度共摻雜HTL的器件性能最優(yōu),最大亮度(97880 cd/m2)和最大功率效率(22 lm/W)分是參比器件的52倍和1.3倍。然后優(yōu)化了MS器件,p-型共摻雜HTL最優(yōu)的摻雜濃度為50%,厚度為30 nm,故其最大亮度(152600cd/m2)與參比器件相比提高51%,最大功率效率(49 lm/W)提高26%。最后通過對相應(yīng)的單空穴器件的表征,得出了器件性能的提高歸因于p-型共摻雜HTL可提高HTL傳輸性能及其導(dǎo)電性,提高空穴濃度,降低驅(qū)動電壓,從而具有更高的亮度和效率的結(jié)論。2.采用周期性結(jié)構(gòu)[Mo O_3(3 nm)/CBP]n構(gòu)成周期性p-型層摻雜HTL,降低了OLEDs啟亮電壓,提高器件亮度與功率效率。首先進(jìn)行了周期性p-型層摻雜HTL的優(yōu)化。其次通過單空穴器件的表征,闡明周期性p-型層摻雜HTL由于改善了HTL的空穴傳輸性能進(jìn)而提高了器件的亮度和效率。而三周期器件D-3由于具有最優(yōu)的摻雜濃度和最適宜的層狀Mo O_3空間分布,因而具有最高的最大電流效率(56 cd/A),最大EQE(15.6%)和最大功率效率(45 lm/W)的同時具有最低的效率滾降與啟亮電壓(3.2 V)。然后通過對比,器件D-3的最大功率效率也要比基于共摻雜結(jié)構(gòu)HTL的參比器件提高18%,這表明了周期性p-型層摻雜結(jié)構(gòu)HTL的優(yōu)越性。最后對周期性p-型層摻雜HTL的摻雜機(jī)理進(jìn)行了闡述。3.利用C_(60)和Cu Pc形成有機(jī)半導(dǎo)體異質(zhì)結(jié)作為基于CBP:Mo O_3的p-型共摻雜結(jié)構(gòu)HTL/ITO陽極的界面修飾層,制備了高效綠色磷光OLEDs。與常規(guī)Mo O_3陽極修飾層相比,C_(60)(5 nm)/Cu Pc(25nm)為面異質(zhì)結(jié)最優(yōu)修飾結(jié)構(gòu),器件的最大電流效率和EQE提高了12%和11%,分別為60 cd/A和16.8%;而Cu Pc:C_(60)(30 nm,50%)體異質(zhì)最優(yōu)修飾結(jié)構(gòu)器件則提高了26%和27%,分別為67cd/A和19.3%。高的器件效率一方面歸因于C_(60)與Cu Pc異質(zhì)結(jié)界面處積累的電荷會在電壓的作用下形成高效的電荷分離和空穴注入;另一方面歸因于C_(60)與Cu Pc異質(zhì)結(jié)具有吸收器件內(nèi)部綠光光子形成光生載流子的光伏效應(yīng)。利用Cu Pc:C_(60)體異質(zhì)結(jié)作界面修飾層的器件由于具有更高效的電荷積累、更合適的空穴傳輸性從而達(dá)到更平衡的載流子復(fù)合以及更好的光伏特性,因而器件效率要比C_(60)/Cu Pc更優(yōu)。
[Abstract]:In recent decades, organic electroluminescent devices (Organic, Light-emitting Devices, OLEDs) with its thin, flexible, low power consumption and light and other excellent properties has become the next generation of full-color display, all solid-state lighting. While the OLEDs is from the Yin and Yang electrode sandwiched between the hole transport layer, a light-emitting layer, electronic the transport layer of organic functional layer "sandwich" structure. The hole transport layer (Hole Transporting Layer, HTL) is an important part of the organic functional layer, the hole transport performance directly determines the transmission to the light emitting layer and a hole injection process, and affect the balance of carrier compound, and ultimately affect the device the performance. However the OHTMs itself has low hole mobility, electrical conductivity and metal electrode bias and poor contact caused high barrier into many short board limits the performance of the device Improved. And the p- type dopant doped p- type doped hole transport layer HTL formed by p- type doping technology, due to significantly improve the transmission performance of HTL hole, has been widely used. In order to improve based on Ir (PPy) 3 green phosphorescent OLEDs device performance, this paper introduces the design of P type doping structure different HTL, in order to improve the performance of the device. The main work is as follows: 1. using p- Co doped structure (CBP:Mo O_3/CBP) Co doped structure by HTL (Co-evaporating Structure CS) and mixed Co doped structure (Mixed Structure, MS) OLEDs. green phosphor was optimized firstly CS device, 20nm device performance optimal doping layer the thickness and doping concentration of Co doped HTL 50% based on the maximum brightness (97880 cd/m2) and the maximum power efficiency (22 lm/W) is 52 times the reference device and 1.3 times. Then optimize the MS device, the doping concentration p- Co doped HTL optimal is 50%, the thickness of 3 0 nm, the maximum brightness (152600cd/m2) and the reference device is 51% higher than that of maximum power efficiency (49 lm/W) to improve the 26%. finally through the characterization of single hole corresponding device, the device performance is attributed to the increase of type p- Co doped HTL can improve the transmission performance of HTL and conductivity, increase the hole concentration to reduce the driving voltage, which has higher brightness and efficiency of the conclusion.2. using periodic structure of [Mo O_3 (3 nm) /CBP]n periodic p- type layer doped HTL, reduces the OLEDs turn-on voltage, improve the brightness and power efficiency. The first optimization layer of HTL doped p- type second periodic. Through the characterization of single hole devices, clarify the periodic p- type doped HTL layer due to the improvement of the transmission performance of HTL hole and improves the brightness and efficiency of device. And the three cycle D-3 device because the doping concentration has the best and the most suitable layered Mo O_3 The spatial distribution, thus has the maximum current efficiency is the highest (56 cd/A), EQE (15.6%) and the maximum power efficiency (45 lm/W) and has the lowest efficiency roll and the turn-on voltage (3.2 V). Then by comparing the maximum power efficiency of D-3 devices than Co doped HTL structure. Based on the 18% higher than the device, it shows the superiority of the periodic p- type doping layer structure of HTL. Finally the mechanism of doping periodic p- type doped HTL layer are described by.3. C_ (60) and Cu Pc to form an organic semiconductor heterojunction as p- CBP:Mo based on O_3 Co doped HTL/ITO anode interface structure the modified layer was prepared by high efficient green phosphorescent OLEDs. and conventional Mo O_3 anode modification layer compared to C_ (60) (5 nm) /Cu Pc (25nm) optimal structure for surface modification of heterogeneous devices, the maximum current efficiency and EQE increased by 12% and 11%, respectively, 60 cd/A and 16.8% Cu (Pc:C_; 60 (30) Nm, 50%) the heterogenous optimal modified structure devices increased by 26% and 27%, respectively 67cd/A and 19.3%. high device efficiency on the one hand due to the C_ Cu Pc (60) and the charge accumulation at the interface of the heterojunction will charge separation and hole injection in the formation of efficient voltage effect; on the other hand, due to the C_ (60) and Cu Pc heterojunction with absorption device internal green photons to form the photovoltaic effect of photogenerated carrier. Using Cu Pc:C_ (60) bulk heterojunction devices interface modification layer with more efficient charge accumulation, hole transport is more appropriate to achieve a more balanced and better photovoltaic properties of composite carrier therefore, the efficiency of the device than the C_ (60) /Cu Pc better.

【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN383.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前8條

1 關(guān)云霞;陳麗佳;陳平;付小強(qiáng);牛連斌;;空穴注入層對微腔有機(jī)發(fā)光二極管光電性能的影響[J];光譜學(xué)與光譜分析;2016年03期

2 李源浩;武聰伶;楊君禮;李菀麗;劉慧慧;賈虎生;王華;劉旭光;伍永安;;基于MoO_3/Ag/MoO_3透明陽極的頂發(fā)射OLED的模擬計算與制備[J];發(fā)光學(xué)報;2015年04期

3 袁樹青;朱媛莉;王振國;郝玉英;王華;許并社;;基于空間電荷限制電流模型的FeCl_3摻雜CBP的空穴遷移率研究[J];光電子.激光;2014年07期

4 郝玉英;李云飛;孫欽軍;崔艷霞;王華;許并社;;有機(jī)電致發(fā)光器件中載流子傳輸與復(fù)合的調(diào)控[J];中國科學(xué):化學(xué);2013年04期

5 張新穩(wěn);胡琦;;有機(jī)電致發(fā)光器件的穩(wěn)定性[J];物理學(xué)報;2012年20期

6 李斌;彭玲;潘曉勇;姚國紅;彭德權(quán);;有機(jī)電致發(fā)光器件(OLED)的封裝技術(shù)研究[J];電子元器件應(yīng)用;2011年04期

7 劉國強(qiáng);紀(jì)文宇;謝文法;張漢壯;;利用NPB/MoO_3/NPB作為空穴傳輸層的低驅(qū)動電壓的有機(jī)發(fā)光器件[J];光譜學(xué)與光譜分析;2011年04期

8 武春紅;張靖磊;劉彭義;侯林濤;;陽極/有機(jī)層界面LiF層在OLED中的空穴緩沖作用[J];發(fā)光學(xué)報;2009年01期

相關(guān)碩士學(xué)位論文 前1條

1 趙聃;基于C_(60)/CuPc光伏型電荷生成層的有機(jī)電致發(fā)光器件[D];太原理工大學(xué);2016年

,

本文編號:1429583

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1429583.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶31978***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com