一種新型雙摻雜多晶硅柵MOSFET的研究
發(fā)布時(shí)間:2018-01-13 01:27
本文關(guān)鍵詞:一種新型雙摻雜多晶硅柵MOSFET的研究 出處:《安徽大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: P+掩埋層 D-gale氧化層 泄漏電流 柵電容 截止頻率
【摘要】:DDPG MOSFET作為一種新型的MOS器件,它具有提高驅(qū)動(dòng)電流,提高器件的跨導(dǎo)和截止頻率等優(yōu)點(diǎn)。但是經(jīng)過研究發(fā)現(xiàn)該器件仍然存在許多缺陷,例如關(guān)態(tài)電流和柵泄漏電流都比普通單柵MOS器件大很多,其跨導(dǎo)受到短溝道效應(yīng)而減小的趨勢(shì)較為明顯。所以針對(duì)上述問題,本文在復(fù)合柵結(jié)構(gòu)的基礎(chǔ)上提出了一種新型器件DDPGPD MOSFET,該器件的創(chuàng)新之處在于近漏端溝道處加入了P+掩埋層并且加厚了D-gate氧化層厚度。本文首先從工藝角度著手,提出了實(shí)現(xiàn)DDPGPD的工藝步驟,特別是針對(duì)柵的實(shí)現(xiàn)以及P+掩埋層加入和D-gate氧化層加厚這三個(gè)主要的工藝步驟給出了詳細(xì)的工藝流程和參數(shù)。使用工藝模擬軟件TSUPREM設(shè)計(jì)了DDPGPD工藝制作步驟,并將得到的結(jié)構(gòu)文件導(dǎo)入Medici中進(jìn)行電學(xué)特性模擬。在比較器件性能時(shí)首先要建立統(tǒng)一的閥值電壓,所以首先對(duì)DDPGPD的Vth進(jìn)行了分析。由于表電勢(shì)最小值始終保持在S-gate下,因此S-gate濃度增加使器件閾值電壓增加;而D-gate農(nóng)度并不會(huì)影響閾值電壓但是提高其濃度會(huì)增加驅(qū)動(dòng)電流。而當(dāng)P+掩埋層濃度和D-gate氧化層厚度在適當(dāng)范圍內(nèi),對(duì)閾值電壓和驅(qū)動(dòng)電流都不會(huì)產(chǎn)生影響。由于DDPG器件D-gate功函數(shù)較低,導(dǎo)致D-gate對(duì)溝道控制過強(qiáng),使得DDPG關(guān)態(tài)電流和柵泄漏電流都比普通MOS器件大。而DDPGPD有效的減小了關(guān)態(tài)電流和柵泄漏電流,除此之外對(duì)于DIBL效應(yīng)有更好的抑制效果。分析了DDPGPD瞬態(tài)特性,包括柵電容、跨導(dǎo)和截止頻率。簡(jiǎn)化了柵電容的組成成分,給出了柵電容的等效電路,并且與DDPG柵電容比較發(fā)現(xiàn)DDPGPD具有更小的柵電容。比較了不同尺寸下DDPGPD, DDPG和NMOSFET的跨導(dǎo),發(fā)現(xiàn)DDPGPD不僅保留了DDPG跨導(dǎo)比NMOSFET大的優(yōu)點(diǎn),而且抑制了DDPG跨導(dǎo)受到短溝道效應(yīng)的影響,使跨導(dǎo)在原有基礎(chǔ)上再次提高。最后通過計(jì)算得到截止頻率,發(fā)現(xiàn)DDPGPD具有更大的截止頻率,從而具有更快的響應(yīng)速度。
[Abstract]:As a new type of MOS device, DDPG MOSFET has the advantages of increasing the driving current, increasing the transconductance and cutoff frequency of the device. However, it is found that there are still many defects in the device. For example, the turn-off current and the gate leakage current are much larger than the common single-gate MOS devices, and the transconductance decreases obviously due to the short channel effect. Based on the compound gate structure, a novel device DDPGPD MOSFET is proposed in this paper. The innovation of this device is that the buried P layer is added to the channel near the drain end and the thickness of the D-gate oxide layer is thickened. In this paper, the process steps to realize DDPGPD are put forward from the point of view of technology. Especially for the realization of gate and P. The three main process steps of buried layer addition and D-gate oxide layer thickening are given in detail. The DDPGPD process is designed by using the process simulation software TSUPREM. Suddenly. The structure file is imported into Medici to simulate the electrical characteristics. When comparing the performance of the device, the unified threshold voltage should be established first. Firstly, the Vth of DDPGPD is analyzed. Because the minimum value of potential is always kept at S-gate, the threshold voltage increases with the increase of S-gate concentration. The D-gate field does not affect the threshold voltage but increases the driving current when the concentration of the buried P layer and the thickness of the D-gate oxide layer are in the appropriate range. Because of the low D-gate power function of the DDPG device, the D-gate control of the channel is too strong. The DDPG switch current and the gate leakage current are larger than the ordinary MOS devices, and the DDPGPD effectively reduces the off state current and gate leakage current. The transient characteristics of DDPGPD are analyzed, including gate capacitance, transconductance and cut-off frequency. The composition of gate capacitance is simplified. The equivalent circuit of gate capacitance is given, and compared with DDPG gate capacitance, it is found that DDPGPD has smaller gate capacitance. DDPGPD with different sizes is compared. The transconductance of DDPG and NMOSFET shows that DDPGPD not only retains the advantage of DDPG transconductance larger than NMOSFET. Moreover, the transconductance of DDPG is restrained by short channel effect, so that the transconductance is improved again. Finally, the cutoff frequency of DDPGPD is obtained by calculation, and it is found that DDPGPD has a larger cutoff frequency. Thus, the response speed is faster.
【學(xué)位授予單位】:安徽大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN386
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 齊銳;代月花;陳軍寧;李俊生;;雙摻雜多晶Si柵MOSFET的截止頻率研究[J];半導(dǎo)體技術(shù);2010年06期
2 方磊;代月花;陳軍寧;;復(fù)合多晶硅柵LDD MOSFET制造工藝研究[J];微電子學(xué);2011年03期
3 樊進(jìn);柯導(dǎo)明;薛峰;陳軍寧;;高k柵MOSFET柵 源/漏寄生電容的半解析模型[J];中國(guó)科學(xué):信息科學(xué);2014年07期
4 羅小蓉;姚國(guó)亮;陳曦;王琦;葛瑞;Florin Udrea;;Ultra-low on-resistance high voltage (>600V) SOI MOSFET with a reduced cell pitch[J];Chinese Physics B;2011年02期
,本文編號(hào):1416874
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1416874.html
最近更新
教材專著