基于有限元法的IGBT模塊封裝散熱性能及熱應(yīng)力的仿真研究
本文關(guān)鍵詞:基于有限元法的IGBT模塊封裝散熱性能及熱應(yīng)力的仿真研究 出處:《重慶大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 有限元 IGBT模塊 散熱性能 熱-結(jié)構(gòu)耦合 熱應(yīng)力
【摘要】:隨著IGBT模塊電流密度的不斷增大、功率不斷提升、體積不斷縮小,IGBT模塊內(nèi)部發(fā)熱量成倍增加,熱量在內(nèi)部堆積不易散發(fā),溫度引起的熱學(xué)、力學(xué)載荷愈加嚴(yán)重,進(jìn)而導(dǎo)致溫度升高及熱應(yīng)力形變加重。若器件在此條件下長期運(yùn)行,容易導(dǎo)致材料疲勞、可靠性降低、甚至影響使用壽命。因此,對(duì)IGBT模塊封裝的熱可靠性相關(guān)問題的進(jìn)一步探索和研究,揭示影響IGBT模塊封裝可靠性的主要因素,對(duì)IGBT模塊結(jié)構(gòu)優(yōu)化設(shè)計(jì)、改善散熱性能有非常重要的指導(dǎo)意義及工程實(shí)用價(jià)值。本文以改善IGBT模塊散熱性能為目的,以ANSYS有限元分析軟件為平臺(tái),分別研究了復(fù)合材料導(dǎo)熱性能、IGBT模塊的散熱性能以及熱應(yīng)力,并根據(jù)計(jì)算得到的IGBT模塊封裝的最高結(jié)溫和最大熱應(yīng)力的結(jié)果,并對(duì)散熱設(shè)計(jì)及結(jié)構(gòu)優(yōu)化提出建議。首先,參考復(fù)合材料實(shí)際的性能參數(shù),模擬復(fù)合材料的微觀結(jié)構(gòu),建立三維有限元模型,計(jì)算復(fù)合材料的等效導(dǎo)熱率,其計(jì)算值與理論值、試驗(yàn)值能很好吻合,說明有限元方法計(jì)算復(fù)合材料導(dǎo)熱率的可行性。在此基礎(chǔ)上對(duì)復(fù)合材料導(dǎo)熱性能的影響因素進(jìn)行分析:基體導(dǎo)熱率、填料導(dǎo)熱率、填料體積百分?jǐn)?shù)、填料分布、填料形狀、填料取向及橢球填料顆粒長徑比,并對(duì)改善復(fù)合材料導(dǎo)熱性能的措施提出建議。其次,研究了IGBT模塊封裝的散熱性能,建立切合實(shí)際的IGBT模塊封裝三維有限元模型,對(duì)溫度場進(jìn)行仿真。通過計(jì)算得到的IGBT模塊封裝的最高結(jié)溫,研究基板、焊層、襯板的材料及其厚度對(duì)IGBT模塊封裝散熱性能的影響,并對(duì)IGBT模塊的散熱設(shè)計(jì)進(jìn)行分析,為其結(jié)構(gòu)優(yōu)化提供參考。最后,對(duì)IGBT模塊進(jìn)行熱-結(jié)構(gòu)耦合分析,用間接法分析IGBT模塊封裝的熱應(yīng)力分布,通過計(jì)算得到的IGBT模塊封裝的最大熱應(yīng)力,研究基板、焊層、襯板的材料及其厚度對(duì)IGBT模塊封裝最大熱應(yīng)力的影響,并提出IGBT模塊結(jié)構(gòu)優(yōu)化的措施。
[Abstract]:With the increasing of current density and power of IGBT module, the volume is reduced and the internal heat is multiplied, the heat is not easy to be emitted, and the heat is caused by temperature. The mechanical load becomes more and more serious, which leads to temperature rise and thermal stress deformation aggravation. If the device runs under this condition for a long time, it will easily lead to material fatigue, reliability decline, and even affect the service life. Further research on the thermal reliability of IGBT module packaging, reveal the main factors that affect the reliability of IGBT module packaging, and optimize the structure of IGBT module. In order to improve the heat dissipation performance of IGBT module, ANSYS finite element analysis software is used as the platform. The heat dissipation and thermal stress of the IGBT module were studied, and the results of the highest junction and maximum thermal stress of the IGBT module were calculated. First of all, referring to the actual performance parameters of the composite material, the microstructure of the composite is simulated, the three-dimensional finite element model is established, and the equivalent thermal conductivity of the composite is calculated. The calculated value is in good agreement with the theoretical value and the experimental value, which shows that the finite element method is feasible to calculate the thermal conductivity of composite material. On this basis, the factors affecting the thermal conductivity of composite material are analyzed: the thermal conductivity of matrix. The thermal conductivity, volume percentage, packing distribution, packing shape, packing orientation and the ratio of length to diameter of ellipsoidal packing particles are also discussed, and some suggestions for improving the thermal conductivity of composites are put forward. The heat dissipation performance of IGBT module package is studied. The 3D finite element model of IGBT module package is established and the temperature field is simulated. The maximum junction temperature of IGBT module package is calculated. The influence of the material and thickness of substrate, welding layer and liner on the heat dissipation performance of IGBT module packaging is studied, and the heat dissipation design of IGBT module is analyzed to provide a reference for its structure optimization. The thermo-structural coupling analysis of IGBT module is carried out, and the thermal stress distribution of IGBT module package is analyzed by indirect method. The maximum thermal stress of IGBT module package is calculated, and the substrate and welding layer are studied. The influence of liner material and its thickness on the maximum thermal stress of IGBT module packaging is discussed. The measures for optimizing the structure of IGBT module are put forward.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN322.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王彥剛,武力,崔雪青,吳武臣,P.Jacbo,M.Held;IGBT模塊封裝熱應(yīng)力研究[J];電力電子技術(shù);2000年06期
2 江平;;柔性基板模塊封裝技術(shù)[J];電訊技術(shù);2011年11期
3 馬亮;;智能卡非接觸模塊封裝技術(shù)[J];電子世界;2014年08期
4 徐云燕;呂曉飛;鄭利兵;方化潮;王春雷;;IGBT模塊封裝工藝的研究[J];智能電網(wǎng);2014年01期
5 Yoshitaka Nishimura;Kazunaga Oonishi;Fumihiko Momose;Tomoaki Goto;袁海斌;;高可靠性IGBT模塊封裝的設(shè)計(jì)[J];電力電子;2010年04期
6 Peter Beckedahl;;電力電子模塊封裝的革命——無綁定線、焊接和導(dǎo)熱硅脂的模塊[J];電源世界;2011年11期
7 ;非接觸IC卡模塊封裝技術(shù)[J];中國集成電路;2007年07期
8 姚玉雙;亓笑妍;王曉寶;趙善麒;;IGBT模塊封裝新技術(shù)[J];電力電子技術(shù);2012年12期
9 張朋;韓榮剛;金銳;于坤山;何維國;劉雋;;電動(dòng)汽車用大功率IGBT模塊封裝技術(shù)[J];智能電網(wǎng);2014年01期
10 丁杰;唐玉兔;忻力;張陳林;胡昌發(fā);;IGBT模塊封裝的熱性能分析[J];機(jī)車電傳動(dòng);2013年02期
相關(guān)會(huì)議論文 前2條
1 姚太平;;三合一集成式全彩模塊封裝方式[A];2008全國LED顯示應(yīng)用技術(shù)交流暨產(chǎn)業(yè)發(fā)展研討會(huì)文集[C];2008年
2 鞏鵬亮;劉清軍;劉利峰;趙善麒;;如何正確理解FRED和FRD的特性參數(shù)[A];2008中國電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文摘要集[C];2008年
相關(guān)碩士學(xué)位論文 前3條
1 張薷方;基于有限元法的IGBT模塊封裝散熱性能及熱應(yīng)力的仿真研究[D];重慶大學(xué);2015年
2 翟超;IGBT模塊封裝熱應(yīng)力研究[D];浙江大學(xué);2013年
3 詹為宇;特種模塊封裝工藝研究[D];電子科技大學(xué);2008年
,本文編號(hào):1380833
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1380833.html