W波段共焦波導(dǎo)回旋行波管高頻結(jié)構(gòu)研究
發(fā)布時間:2018-01-03 16:27
本文關(guān)鍵詞:W波段共焦波導(dǎo)回旋行波管高頻結(jié)構(gòu)研究 出處:《電子科技大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 回旋行波管 共焦波導(dǎo) 輸入耦合系統(tǒng) 色散特性 衍射損耗
【摘要】:毫米波技術(shù)在高能武器、宇宙探測、雷達(dá)跟蹤、電子對抗和氣象預(yù)報等領(lǐng)域具有非常重要的應(yīng)用。而毫米波源是整個毫米波技術(shù)的重點和難點,因此對毫米波源的研究非常重要;匦胁ü苁且环N基于電子回旋脈塞機(jī)理工作的電真空器件,由于其在毫米波乃至太赫茲頻段可以得到寬帶寬、高效率和高功率的輸出信號,已經(jīng)成為國內(nèi)外的研究熱點。但是隨著頻段的升高,回旋行波管的模式競爭問題越來越突出,因此那些具有模式選擇特性的高頻結(jié)構(gòu)就脫穎而出。共焦波導(dǎo)是一種橫向開敞的結(jié)構(gòu),電磁波可以從橫向開敞面衍射出去,且不同模式的衍射損耗不同,因此具有模式選擇作用,這種模式選擇特性可以用來解決模式競爭問題。本文進(jìn)行了W波段共焦波導(dǎo)回旋行波管高頻結(jié)構(gòu)的研究。經(jīng)過對模式競爭和功率容量的折中,確定工作模式為HE06。從回旋行波管的線性理論入手,對共焦波導(dǎo)回旋行波管高頻結(jié)構(gòu)的色散特性和衍射損耗進(jìn)行理論計算和仿真驗證,同時也分析了其模式競爭問題。本文還進(jìn)行了共焦波導(dǎo)回旋行波管輸入耦合系統(tǒng)的研究,從傳統(tǒng)的單端垂直輸入耦合系統(tǒng)和雙端垂直對稱輸入耦合系統(tǒng)入手,提出了一種傾斜對稱輸入的方法來擴(kuò)展輸入耦合系統(tǒng)的帶寬。同時提出了通過改變邊界條件來抑制競爭模式的耦合。最后對共焦波導(dǎo)輸入耦合系統(tǒng)進(jìn)行了仿真優(yōu)化,該輸入耦合系統(tǒng)的性能:最大耦合效率為75.68%,3 dB耦合帶寬為8.2 GHz,相對帶寬為8.41%,耦合效率大于等于60%的帶寬為6.8 GHz的。最后基于回旋行波管非線性理論,對回旋行波管中注-波互作用的機(jī)理進(jìn)行分析。對工作模式為HE06的共焦波導(dǎo)進(jìn)行PIC仿真,發(fā)現(xiàn)其模式競爭問題非常嚴(yán)重,導(dǎo)致工作模式信號不能高效、穩(wěn)定的放大。從減小競爭模式數(shù)量的角度出發(fā),并且為了消除輸入耦合器導(dǎo)致的問題,設(shè)計了工作模式為HE04的共焦波導(dǎo),采用直接輸入的方式對其進(jìn)行了PIC仿真計算和優(yōu)化,得到200 kW的穩(wěn)定輸出功率,最大輸出功率是204 kW。
[Abstract]:Millimeter-wave technology has very important applications in the fields of high-energy weapons, space exploration, radar tracking, electronic countermeasure and weather forecast, etc. The millimeter wave source is the focus and difficulty of the whole millimeter wave technology. Therefore, the study of millimeter wave source is very important. Gyrotron traveling wave tube is an electronic vacuum device based on electron cyclotron maser mechanism, because it can get wide band in millimeter wave and even terahertz band. High efficiency and high power output signal has become a research hotspot at home and abroad, but with the rise of frequency band, the mode competition problem of gyrotron TWT becomes more and more prominent. The confocal waveguide is a kind of transverse open structure, electromagnetic wave can be diffracted from the transverse open surface, and the diffractive loss of different modes is different. Therefore, it has the role of mode selection. This mode selection characteristic can be used to solve the problem of mode competition. In this paper, the high-frequency structure of W-band confocal waveguide cyclotron traveling wave tube is studied. The trade-off between mode competition and power capacity is given. Based on the linear theory of cyclotron, the dispersion characteristics and diffraction loss of high frequency structure of confocal waveguide gyrotron are calculated and verified by simulation. At the same time, the mode competition problem is also analyzed. In this paper, the input coupling system of confocal waveguide cyclotron traveling wave tube is studied, starting with the traditional single-ended vertical input coupling system and the two-terminal vertical symmetric input coupling system. A skew symmetric input method is proposed to expand the bandwidth of the input coupling system. At the same time, the competitive mode coupling is restrained by changing the boundary conditions. Finally, the simulation of the confocal waveguide input coupling system is carried out. Turn. The performance of the input coupling system: the maximum coupling efficiency is 75.68 dB coupling bandwidth is 8.2GHz, the relative bandwidth is 8.41%. The coupling efficiency is greater than 60% and the bandwidth is 6.8 GHz. Finally, based on the nonlinear theory of cyclotron. The mechanism of beam-wave interaction in gyrotron traveling wave tube is analyzed. The PIC simulation of a confocal waveguide operating in HE06 mode shows that the mode competition problem is very serious. In order to reduce the number of competing modes and eliminate the problem caused by the input coupler, a confocal waveguide with HE04 mode is designed. The direct input method is used to simulate and optimize the output power of 200kW, and the maximum output power is 204kW.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TN124
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 鮑堯;薛謙忠;金鋒;李科;;W波段回旋速調(diào)管輸入耦合器的優(yōu)化設(shè)計[J];電子與信息學(xué)報;2014年10期
2 徐勇;熊彩東;羅勇;王建勛;鄢然;蒲友雷;王暉;李宏福;;Ka波段TE_(01);匦胁ü軐拵л斎腭詈掀鞯脑O(shè)計[J];真空科學(xué)與技術(shù)學(xué)報;2012年03期
3 劉盛綱;鐘任斌;;太赫茲科學(xué)技術(shù)及其應(yīng)用的新發(fā)展[J];電子科技大學(xué)學(xué)報;2009年05期
4 王建勛;羅勇;徐勇;;回旋速調(diào)管輸入耦合器分析與設(shè)計[J];強(qiáng)激光與粒子束;2007年06期
相關(guān)博士學(xué)位論文 前2條
1 胡鵬;0.14THz共焦波導(dǎo)回旋行波管研究[D];中國工程物理研究院;2013年
2 來國軍;W波段回旋行波管放大器的研究[D];中國科學(xué)院研究生院(電子學(xué)研究所);2006年
,本文編號:1374686
本文鏈接:http://sikaile.net/kejilunwen/dianzigongchenglunwen/1374686.html
最近更新
教材專著