考慮風(fēng)電預(yù)測誤差分布特性的機(jī)組組合模型與算法
[Abstract]:Energy is the key to the sustainable and rapid development of the economy and society, but the increasing shortage of the fossil energy and the deteriorating living environment make the traditional energy supply system facing a severe challenge. Therefore, clean renewable energy, such as wind power and solar energy, is constantly concerned. The wind power generation has become one of the main power sources of the power system because of its mature technology, better investment return effect and policy support. However, due to the randomness of wind energy, wind power can provide clean energy and reduce carbon emission, and also brings great challenges to the dispatching and operation of the power system. On the one hand, the random fluctuation of wind power is difficult to grasp accurately. Although the prediction of wind power has made great progress through long-term research, its prediction accuracy is still difficult to meet the needs of the actual project. Therefore, it is necessary to analyze and grasp the error characteristic of the prediction result on the basis of the existing prediction technology, so as to reduce the influence of the random fluctuation of the wind power on the decision-making behavior such as the combination of the unit and the economy, and realize the high-efficiency utilization of the wind power prediction information. On the other hand, the wind power of random fluctuation is difficult to coordinate with the traditional deterministic scheduling mode. The continuous increase of the wind power permeability brings great economic and environmental benefits to the system, and the uncertainty of the system operation is also increased, and the traditional deterministic unit combination and the economic dispatching mode obviously have difficulty in coping with the uncertainty caused by large-scale wind power access. Therefore, how to realize the effective connection between the volatility wind power and the deterministic unit combination is of great theoretical and practical significance to improve the operation economy and safety of the power system. In this paper, the accurate expression of the characteristic of the wind power prediction error is first studied, then its application in the unit combination is discussed, and the combination method of the unit considering the timing characteristics of the prediction error is put forward to improve the economy and safety of the wind power system. The main work can be summarized as follows: (1) The probability distribution characteristic of the wind power prediction error is studied, and the prediction error is fitted and analyzed by the parameter and the non-parameter estimation method, including the normal distribution, the Beta distribution, the T-location-scale distribution, and the non-parameter kernel density estimation method. And further improving the evaluation index of the fitting effect of the existing test probability density function. Using the actual wind power to predict the error data, the effects of different fitting methods and different fitting parameters on the fitting effect are compared and analyzed. (2) Considering the difference of the wind power prediction error under different power levels and different time periods, a method for fitting the error segment under the power-time sequence dimension is proposed, and the error fitting precision is improved by simultaneously segmenting the power and the time sequence. In view of the excessive partition problem, a section reduction method is proposed to solve the contradiction between the number of the packets and the fitting effect, so that the fitting precision is improved, and the fitting calculation amount is reduced, so that the method is more practical. The study shows that the method of fitting the error power-time-sequence feature can more accurately describe the distribution characteristics of the wind power prediction error. (3) A combined model of the combination of the prediction error timing distribution and the system standby classification can be considered at the same time. The model combines the timing characteristics of the prediction error with the timing characteristics of the combination of the units, so that the timing characteristics of the prediction error can be accurately grasped; meanwhile, the model is divided according to the traditional cost, the additional standby cost and the risk cost to different standby categories, And the model is solved by using a mixed particle swarm algorithm with a heuristic search principle.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TM614
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭宇;茹海鵬;郭寶剛;;電力分配系統(tǒng)中的機(jī)組組合問題[J];硅谷;2011年08期
2 蔣妮娜;張志學(xué);劉超男;;不同約束下機(jī)組組合決策結(jié)果的分析[J];山東電力高等專科學(xué)校學(xué)報(bào);2013年03期
3 朱翠蘭,孫時(shí)春,,劉筱,周京陽,于爾鏗;華中電網(wǎng)機(jī)組組合軟件的開發(fā)與運(yùn)用[J];華中電力;1995年05期
4 王民量,張伯明,夏清;考慮多種約束條件的機(jī)組組合新算法[J];電力系統(tǒng)自動(dòng)化;2000年12期
5 王承民,郭志忠;電力市場環(huán)境下解決機(jī)組組合問題的新方法[J];電力自動(dòng)化設(shè)備;2001年11期
6 王承民,郭志忠,于爾鏗;確定機(jī)組組合的一種改進(jìn)的動(dòng)態(tài)規(guī)劃方法[J];電網(wǎng)技術(shù);2001年05期
7 王承民,郭志忠;機(jī)組組合問題的罰函數(shù)法[J];繼電器;2001年11期
8 江健健,夏清,沈瑜,康重慶,許洪強(qiáng),張?jiān)i;基于邊際電價(jià)的短期機(jī)組組合求解新方法[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年Z1期
9 袁曉輝,袁艷斌,張勇傳;電力系統(tǒng)中機(jī)組組合的現(xiàn)代智能優(yōu)化方法綜述[J];電力自動(dòng)化設(shè)備;2003年02期
10 王海云,趙宏偉,張曉清;蒙特卡洛優(yōu)化法在機(jī)組組合問題中的應(yīng)用[J];后勤工程學(xué)院學(xué)報(bào);2004年04期
相關(guān)會(huì)議論文 前6條
1 李曉磊;周京陽;于爾鏗;潘毅;;電力系統(tǒng)機(jī)組組合研究綜述[A];中國高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(上冊)[C];2008年
2 李曉磊;周京陽;于爾鏗;潘毅;;改進(jìn)線性混合整數(shù)規(guī)劃法機(jī)組組合[A];中國高等學(xué)校電力系統(tǒng)及其自動(dòng)化專業(yè)第二十四屆學(xué)術(shù)年會(huì)論文集(上冊)[C];2008年
3 郭文蘭;韓學(xué)山;;基于模糊決策的最優(yōu)機(jī)組組合[A];1994中國控制與決策學(xué)術(shù)年會(huì)論文集[C];1994年
4 謝俊;;考慮風(fēng)電出力隨機(jī)性的風(fēng)—火機(jī)組組合建模(英文)[A];中國智能電網(wǎng)學(xué)術(shù)研討會(huì)論文集[C];2011年
5 王楠;張黎明;滿玉巖;;計(jì)及換電站電池充放電優(yōu)化的機(jī)組組合模型[A];2013年中國電機(jī)工程學(xué)會(huì)年會(huì)論文集[C];2013年
6 賴曉平;王冰;;提高機(jī)組組合問題動(dòng)態(tài)規(guī)劃算法效率的有效方法[A];第二十二屆中國控制會(huì)議論文集(下)[C];2003年
相關(guān)博士學(xué)位論文 前10條
1 龍丹麗;大規(guī)模電力系統(tǒng)機(jī)組組合問題的近似動(dòng)態(tài)規(guī)劃模型與算法[D];廣西大學(xué);2014年
2 周博然;含風(fēng)電的機(jī)組組合模型及算法研究[D];浙江大學(xué);2015年
3 鄭海艷;機(jī)組組合基于Benders分解與割平面的方法及約束優(yōu)化SQP算法研究[D];廣西大學(xué);2015年
4 鄧俊;機(jī)組組合混合整數(shù)線性規(guī)劃模型的研究與改進(jìn)[D];廣西大學(xué);2015年
5 張娜;面向風(fēng)電高不確定性的多周期機(jī)組組合研究[D];大連理工大學(xué);2014年
6 車平;基于最優(yōu)化的電力系統(tǒng)機(jī)組組合問題研究[D];東北大學(xué);2012年
7 楊朋朋;機(jī)組組合理論與算法研究[D];山東大學(xué);2008年
8 張利;電力市場中的機(jī)組組合理論研究[D];山東大學(xué);2006年
9 謝毓廣;計(jì)及網(wǎng)絡(luò)安全約束和風(fēng)力發(fā)電的機(jī)組組合問題的研究[D];上海交通大學(xué);2011年
10 韓道蘭;機(jī)組組合問題緊外逼近與內(nèi)外逼近模型方法及優(yōu)化問題QP-free算法研究[D];廣西大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 李穎浩;電力系統(tǒng)機(jī)組組合問題的研究[D];浙江大學(xué);2012年
2 謝上華;隨機(jī)機(jī)組組合問題中情景生成與削減技術(shù)研究[D];湖南大學(xué);2013年
3 諸言涵;基于序優(yōu)化理論的大規(guī)模機(jī)組組合求解算法研究[D];華南理工大學(xué);2015年
4 閆圓圓;基于向量序優(yōu)化理論的大規(guī)模多目標(biāo)機(jī)組組合問題研究[D];華南理工大學(xué);2015年
5 李健成;考慮環(huán)境成本的含多類型能源的魯棒機(jī)組組合問題[D];華南理工大學(xué);2015年
6 龍杭;計(jì)及網(wǎng)絡(luò)安全約束和需求側(cè)低碳資源的機(jī)組組合研究[D];北京交通大學(xué);2016年
7 徐勤;考慮風(fēng)電不確定性的風(fēng)電并網(wǎng)調(diào)度方法研究[D];江蘇大學(xué);2016年
8 王昭卿;考慮風(fēng)電預(yù)測誤差分布特性的機(jī)組組合模型與算法[D];山東大學(xué);2016年
9 張曉丹;風(fēng)電功率預(yù)測誤差不確定性建模研究[D];北京交通大學(xué);2016年
10 何小磊;電力系統(tǒng)機(jī)組組合問題的研究[D];上海交通大學(xué);2009年
本文編號(hào):2507686
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2507686.html