低壓微電網(wǎng)中兩級LCC逆變系統(tǒng)及其并網(wǎng)控制策略研究
[Abstract]:In view of the characteristics and nonlinear factors of low voltage microgrid and the increasingly prominent problem of three-phase load imbalance, the research on its control mode and inverter system is of great significance. In this paper, the inverter system with two-stage topology is analyzed. The front stage converts the DC voltage through Buck-Boost circuit, and follows the influence of distributed power supply voltage fluctuation to complete the voltage adjustment in order to meet the working needs of the later stage inverter. LCC (inductor-Capacitor, inductor-capacitor-capacitor) inverter circuit is used to convert the output voltage of the front stage into AC current which meets the requirements of grid-connected. In this paper, the state space average method is used to analyze and model the Buck-Boost circuit, and the linear transfer function of AC small signal is obtained. Aiming at the instability of the system, a proportional integral compensator is designed so that the control system can effectively suppress the low frequency disturbance and follow the given voltage quickly when the input voltage and load appear step disturbance. Then the voltage source LCC inverter system, which is only determined by the input fundamental voltage, is analyzed and established, which has good output voltage quality under both nonlinear load and load imbalance. Based on the excellent characteristics of LCC inverter system, the voltage control strategy of LCC inverter system is studied in this paper. Aiming at the open-loop control strategy of LCC inverter, which has large start-up overshoot and can not restrain input voltage disturbance, a real-time hysteretic control strategy with output voltage is adopted, which effectively reduces the start-up overshoot and realizes the fast regulation of voltage disturbance. Based on the analysis of three-phase unbalanced load and nonlinear load of LCC inverter, according to the model of LCC inverter system, the compensator of disturbance component is designed, and a compensation chain is introduced to counteract the influence of nonlinear load. In order to solve the problem of output voltage amplitude decline caused by dead-time effect in modulation process, the elimination and suppression strategy of dead-time effect is designed by analyzing the working mode of single-phase bridge arm at dead time. At the same time, on the basis of expounding the principle of traditional Pf-QV droop control, an improved PV-Qf drooping control strategy with frequency and voltage coordination control with resistive virtual impedance is designed for low voltage microgrid. When the inverter fed energy to the power grid, a grid-connected open-loop control strategy was designed. The simulation results show that the open-loop control is feasible under ideal conditions. For the case of disturbance, the proportional resonance control strategy is used to synchronize the LCC inverter system into the power grid, and the control system can track the sinusoidal signal of 50Hz without phase deviation, and at the same time has attenuation effect on other harmonics. Finally, a microgrid simulation model with two LCC inverter systems in parallel is built in MATLAB/Simulink, and the simulation analysis in isolated island and grid-connected mode is carried out. In isolated island mode, it is verified that the improved drooping control strategy for low voltage microgrid can realize the power distribution and smooth switching of the two inverters. In the grid-connected mode, the designed proportional resonance controller is simulated, and it is verified that the grid-connected current can follow the given current and run per unit power factor. In addition, the waveform quality of grid-connected current of LCC inverter and LCL inverter is compared. The steady-state error and harmonic distortion rate of grid-connected current of LCC inverter are lower than those of LCL inverter, which further explains the excellent characteristics of LCC inverter.
【學(xué)位授予單位】:西華大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM464
【參考文獻】
相關(guān)期刊論文 前10條
1 李源;李永東;程志江;李響;郭俊輝;;基于主從控制的微電網(wǎng)平滑切換控制策略研究[J];電測與儀表;2016年24期
2 桂永光;劉桂英;粟時平;羅錢;張捷;;適用于光伏微網(wǎng)并網(wǎng)和孤島運行的控制策略[J];電源技術(shù);2016年05期
3 閆俊麗;彭春華;陳臣;;基于動態(tài)虛擬阻抗的低壓微電網(wǎng)下垂控制策略[J];電力系統(tǒng)保護與控制;2015年21期
4 黎金英;艾欣;;改善微電網(wǎng)電能質(zhì)量的分層控制策略研究[J];寧夏電力;2015年05期
5 馬皓;林釗;王小瑞;;不平衡非線性負載下三相逆變器的建模與控制[J];電工技術(shù)學(xué)報;2015年18期
6 許津銘;謝少軍;張斌鋒;;分布式發(fā)電系統(tǒng)中LCL濾波并網(wǎng)逆變器電流控制研究綜述[J];中國電機工程學(xué)報;2015年16期
7 張哲;專祥濤;于炎娟;;基于狀態(tài)空間平均法的逆變器建模與控制策略研究[J];自動化與儀表;2015年08期
8 周龍;齊智平;;微電網(wǎng)保護研究綜述[J];電力系統(tǒng)保護與控制;2015年13期
9 宋保業(yè);許琳;盧曉;;基于Tustin變換的分數(shù)階微分算子近似離散化[J];科學(xué)技術(shù)與工程;2015年13期
10 許德志;汪飛;阮毅;毛華龍;張巍;楊影;;并網(wǎng)接口濾波器拓撲結(jié)構(gòu)推演與分析[J];電工技術(shù)學(xué)報;2015年04期
相關(guān)博士學(xué)位論文 前5條
1 陳燕東;微電網(wǎng)多逆變器控制關(guān)鍵技術(shù)研究[D];湖南大學(xué);2014年
2 任洲洋;光伏時空概率模型及其在電力系統(tǒng)概率分析中的應(yīng)用[D];重慶大學(xué);2014年
3 薛貴挺;含多種分布式能源的微電網(wǎng)優(yōu)化及控制策略研究[D];上海交通大學(xué);2014年
4 蔡克衛(wèi);基于LCL濾波的微網(wǎng)逆變器控制策略研究[D];大連理工大學(xué);2014年
5 王要強;LCL濾波的并網(wǎng)逆變系統(tǒng)及其適應(yīng)復(fù)雜電網(wǎng)環(huán)境的控制策略[D];哈爾濱工業(yè)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前8條
1 石宇龍;電網(wǎng)電壓畸變情況下三相并網(wǎng)逆變器控制研究[D];燕山大學(xué);2015年
2 趙西超;三相光伏并網(wǎng)逆變器與控制技術(shù)的研究[D];遼寧工業(yè)大學(xué);2014年
3 鄭曉明;微網(wǎng)逆變器虛擬同步發(fā)電機控制策略的分析與驗證[D];燕山大學(xué);2013年
4 張中鋒;微網(wǎng)逆變器的下垂控制策略研究[D];南京航空航天大學(xué);2013年
5 柯人觀;微電網(wǎng)典型供電模式及微電源優(yōu)化配置研究[D];浙江大學(xué);2013年
6 張純;微網(wǎng)雙模式運行的控制策略研究[D];重慶大學(xué);2011年
7 張文波;微電網(wǎng)逆變電源控制策略的研究[D];山東大學(xué);2011年
8 唐亮;三相并網(wǎng)逆變器LCL濾波特性分析及控制研究[D];燕山大學(xué);2010年
,本文編號:2505669
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2505669.html