塔式光聚熱發(fā)電地基云圖超短期輻照功率預(yù)測系統(tǒng)研究
[Abstract]:In optical thermal power generation, cloud layer is one of the fundamental reasons that affect the irradiance, and its generation, elimination and movement will have an impact on the stability of power output. Therefore, the prediction of cloud motion trend in the range of mirror field is the key to realize the prediction of irradiation power. For medium and long term irradiance variation, it can be adjusted by energy storage device. However, the sudden change of irradiance will bring great interference to the system. In order to eliminate this influence, the temperature loss of the endothermic power generation system is compensated by adjusting the inlet low temperature fluid flow rate by the endothermic temperature control system. However, there is a minute stage pure lag in this control system, and a certain reaction time is needed when the clouds block the sun, and the temperature stability of the high temperature fluid at the outlet of the absorber can not be guaranteed during this period. Therefore, the prediction system can provide a feedforward signal for the temperature control system of the absorber, and overcome the pure lag (minute stage) of the control system from the ultra-short term prediction results. After a small fluctuation when the occlusion occurs, the fluid temperature at the outlet of the absorber can be quickly restored to stability. Different from the medium and long term prediction based on historical meteorological data and satellite cloud images, this study is based on foundation cloud images. The sun-centered target image is obtained by tracking and shooting system, and the cloud layer is observed and analyzed by computer vision technology. It has the characteristics of good real-time and high accuracy, and can meet the requirements of minute level ultra-short-term irradiation power prediction. In this paper, five aspects of system initialization, lens distortion correction, cloud layer detection, cloud layer matching and cloud layer prediction are systematically studied and verified. The specific research work of this paper includes: (1) using tracking bracket, CCD camera and wide-angle lens to form a tracking shooting system, the sun-centered cloud image is obtained, and the sun is obscured by the lens center shade. The data interaction between the tracking bracket and the PC end is realized by RS485 communication protocol, and the exposure automatic adjustment is realized by adjusting the exposure time and signal gain of the camera. (2) A correction model of barrel distortion is determined, and the correction method of bucket distortion of wide angle lens is completed by the correction method of multinomial address correction combined with concentric circle template, and obvious results are obtained. (3) an idea of cloud detection based on clustering and then classification is proposed, and a cloud layer detection algorithm based on color feature and K-Means clustering is proposed, and the detection results are evaluated. Compared with the gray threshold segmentation method, its detection effect is greatly improved. (4) the accurate matching results are obtained by using SIFT algorithm and error matching elimination method. On this basis, a large number of matching points can be obtained for the long time span matching method with an interval of more than one minute. According to the cloud slice tracking method, the matching point and outline point information of all areas of effective cloud layer are counted respectively, which fully reflects the uniqueness of cloud motion state. (5) according to the piecewise tracking results, a hierarchical prediction model combined with particle filter cloud prediction method is proposed, which can accurately predict the cloud movement within 4 minutes. The predicted cloud amount information is used to correspond to the variation of solar irradiance and irradiation power.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM615
【參考文獻】
相關(guān)期刊論文 前10條
1 李天成;范紅旗;孫樹棟;;粒子濾波理論、方法及其在多目標(biāo)跟蹤中的應(yīng)用[J];自動化學(xué)報;2015年12期
2 周游;張劍;周少武;王維;;一種改進的廣角鏡頭數(shù)字圖像畸變校正算法[J];計算技術(shù)與自動化;2015年03期
3 朱想;居蓉蓉;程序;丁宇宇;周海;;組合數(shù)值天氣預(yù)報與地基云圖的光伏超短期功率預(yù)測模型[J];電力系統(tǒng)自動化;2015年06期
4 楊達(dá);王孝通;徐冠雷;戰(zhàn)勇強;;一種基于圖像分割和圖像拼接技術(shù)的全天空云量估計方法[J];新型工業(yè)化;2014年08期
5 王法勝;魯明羽;趙清杰;袁澤劍;;粒子濾波算法[J];計算機學(xué)報;2014年08期
6 許佩佩;劉建忠;周俊虎;岑可法;;塔式太陽能熱發(fā)電接收器的研究進展[J];熱能動力工程;2014年03期
7 梁秀紅;竇龍江;于興江;;仿射變換的應(yīng)用[J];聊城大學(xué)學(xué)報(自然科學(xué)版);2013年04期
8 何賓;陶丹;彭勃;;高實時性F-SIFT圖像拼接算法[J];紅外與激光工程;2013年S2期
9 涂波;劉璐;劉一會;金野;湯俊雄;;一種擴展小孔成像模型的魚眼相機矯正與標(biāo)定方法[J];自動化學(xué)報;2014年04期
10 徐仙偉;楊雁瑩;曹霽;;基于同心圓環(huán)模板的攝像機標(biāo)定方法[J];科學(xué)技術(shù)與工程;2013年31期
相關(guān)會議論文 前2條
1 萬霞;霍娟;呂達(dá)仁;;基于全天空圖像的投影變換算法實現(xiàn)[A];S8 大氣探測與儀器新技術(shù)、新方法[C];2012年
2 張磊;朱磊;;一種綜合圖像紋理和灰度特征的分割算法[A];通信理論與信號處理新進展——2005年通信理論與信號處理年會論文集[C];2005年
相關(guān)博士學(xué)位論文 前1條
1 邵偉;蒙特卡洛方法及在一些統(tǒng)計模型中的應(yīng)用[D];山東大學(xué);2012年
相關(guān)碩士學(xué)位論文 前9條
1 黃勇;改進的互信息與LDA結(jié)合的特征降維方法研究[D];華中師范大學(xué);2016年
2 王淵民;基于SIFT算法的圖像快速匹配系統(tǒng)設(shè)計[D];成都理工大學(xué);2014年
3 魯高宇;地基云圖云狀識別算法研究[D];南京信息工程大學(xué);2014年
4 李林;基于地基云圖的云量檢測與云狀識別[D];南京信息工程大學(xué);2014年
5 張鵬;鏡場天空云層的監(jiān)測方法研究[D];浙江大學(xué);2013年
6 馮偉;圖像桶形畸變校正的研究與實現(xiàn)[D];北方工業(yè)大學(xué);2011年
7 周元;基于塊匹配和光流方程的視頻運動信息提取[D];吉林大學(xué);2006年
8 金偉;多鏡頭無縫拼接成像系統(tǒng)的設(shè)計與研究[D];浙江大學(xué);2006年
9 徐培鳳;基于圖像處理的自動對焦和自動曝光算法研究[D];江蘇大學(xué);2005年
,本文編號:2504680
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2504680.html