撓電智能結(jié)構(gòu)的振動(dòng)控制與能量采集研究
[Abstract]:The intelligent structure has the characteristics of small volume, fast response, large deformation and the like, and can realize the sensing, vibration control, noise control and stability control of the structure, and has important application in the fields of aerospace, mechanical electronics, biomedicine and the like. The flexible electric material does not need to be polarized, does not have the problem of depolarization and aging, and the like, and is convenient to apply; therefore, the flexible electric intelligent structure has a wide application prospect in the engineering application. In this paper, based on the general double-curvature thick-shell structure, a force-electric coupling dynamic model with a flexible electric effect is established, which takes into account the shearing effect and the rotational inertia term, and takes into account the influence of the geometrical non-linearity of the large deformation. In this paper, the dynamic equations of the force-electric coupling under the action of the reverse-bending electric effect are derived, and the modal control response of the general double-curvature thick-shell structure is given. The dynamic equation and the flexural vibration control mode response based on the general double-curvature thick-shell structure can simplify the application to the general double-curvature shell shell structure and the small deformation structure, and can simplify the application to different shell and non-shell structures according to the pull-in constant and the radius of curvature of the specific structure. In this paper, the general double-curvature flexible thin shell is applied to the simplified application of flexible electric rectangular plate, flexible electric cylindrical shell and flexible electric hemisphere thin shell. Based on the dynamic equation of flexible electric control, the key to the vibration control is to construct the non-uniform electric field, that is, to construct the electric field gradient. In this paper, an atomic force microscope (AFM) probe excitation, a wire excitation and a flexible electric fiber containing a metal core are respectively constructed to generate electric field gradient, and the vibration control of different structures is studied. In this paper, the vibration control model of the cantilever beam structure excited by the AFM probe is firstly established, and the end displacement of the cantilever beam caused by the flexible electric effect under the action of the excitation voltage is given. At the same time, the flexible electro-operation experiment is carried out, the end displacement of the flexible electric cantilever beam is measured respectively when the flexible electric actuator is in different positions, and the theoretical prediction is compared, and the feasibility of the flexible electric actuation theory is verified. The action displacement caused by flexible electric excitation is related to the radius and position of the probe and the thickness of the flexible beam, and the efficiency of the vibration control is improved by the different parameters. In this paper, an alternative method for generating electric field gradient is constructed based on the wire excitation, and the vibration control is carried out on the rectangular plates which are simply supported on both sides. In the light of the different modes of the rectangular plate, the displacement of the vibration control caused by the flexible electric effect is discussed, and the influence of different parameters on the vibration control displacement of the rectangular plate is discussed, and the effect of the vibration control is optimized. In addition, the vibration control analysis of the elastic cantilever structure is carried out by using the electric field gradient caused by the metal-core flexible electric fiber. The influence of the parameters such as the radius of the flexible electric fiber, the radius of the metal core, the number and the position of the flexible electric fiber on the vibration control is also discussed. In addition, based on the positive-flex electric effect, the model of the flexible electric energy capture device based on the general double-curvature shell structure is established, and the voltage and the power output of the external load resistor at the two ends of the external load resistor are derived. according to the tension and the radius of curvature of the specific structure, the flexible electric energy capture device of the general double-curvature shell is simplified to be applied to a flexible electric cylindrical shell capture device, a flexible electric circular ring shell capture device and a flexible electric cantilever beam energy collector, and the voltage and the power output expression at the two ends of the load of the specific structural energy collector are given, And the specific parameter analysis of the ring shell capture device is carried out to optimize the output power. In order to discuss the application of flexible electric effect in engineering, this paper analyzes the structure of ring shell, and analyzes the effects of different bending angles and different strain components on the sense of flex-wire and vibration control for the different modes of the ring shell.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM619
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉季,閔書亮,滕軍,李慧;抗震抗風(fēng)振動(dòng)控制建筑新體系[J];哈爾濱建筑工程學(xué)院學(xué)報(bào);1993年04期
2 韓成浚;快速提供振動(dòng)控制產(chǎn)品[J];蘭州科技情報(bào);1994年03期
3 李華英,李貴榮;振動(dòng)控制的發(fā)展及趨勢(shì)[J];云南農(nóng)業(yè)大學(xué)學(xué)報(bào);2001年01期
4 劉世忠,歐陽(yáng)永金,朱東生;梁橋振動(dòng)控制[J];甘肅科學(xué)學(xué)報(bào);2002年01期
5 吳立人;;國(guó)外振動(dòng)控制研究動(dòng)態(tài)[J];船工科技;1985年02期
6 倪善生;;機(jī)械中的振動(dòng)控制[J];建筑機(jī)械;1990年12期
7 ;書訊[J];機(jī)械工人.冷加工;2004年06期
8 唐曉娟;;關(guān)于海洋工程結(jié)構(gòu)中噪聲與振動(dòng)控制的探討[J];海洋石油;2013年03期
9 鄒立華,趙人達(dá);組合隔震結(jié)構(gòu)的振動(dòng)控制研究[J];振動(dòng)與沖擊;2005年02期
10 樊長(zhǎng)林;路國(guó)運(yùn);張善元;;某混合振動(dòng)控制裝置的性能試驗(yàn)研究[J];工程抗震與加固改造;2013年05期
相關(guān)會(huì)議論文 前10條
1 劉季;;結(jié)構(gòu)抗震抗風(fēng)振動(dòng)控制[A];第六屆全國(guó)結(jié)構(gòu)工程學(xué)術(shù)會(huì)議論文集(第一卷)[C];1997年
2 李全祿;張晴;梁盛德;馬晴;楊貴考;周九茹;;兩種新型聲學(xué)與振動(dòng)控制器件的研究[A];中國(guó)聲學(xué)學(xué)會(huì)2006年全國(guó)聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
3 楊楓;李杰;薛偉辰;;壓電智能梁振動(dòng)控制研究進(jìn)展[A];先進(jìn)纖維混凝土 試驗(yàn)·理論·實(shí)踐——第十屆全國(guó)纖維混凝土學(xué)術(shù)會(huì)議論文集[C];2004年
4 汪性武;;基于積分分離PID控制的柔性臂振動(dòng)控制[A];第八屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集摘要[C];2003年
5 劉利軍;張志誼;沈榮瀛;;繞定軸轉(zhuǎn)動(dòng)柔性ACLD板的振動(dòng)控制[A];隨機(jī)振動(dòng)理論與應(yīng)用新進(jìn)展——第六屆全國(guó)隨機(jī)振動(dòng)理論與應(yīng)用學(xué)術(shù)會(huì)議論文摘要集[C];2008年
6 賀惠農(nóng);陳章位;;多臺(tái)同步振動(dòng)控制理論與應(yīng)用[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2007年
7 王海強(qiáng);崔龍;黃海;;改進(jìn)ADC方法在振動(dòng)控制中的應(yīng)用[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)D卷[C];2011年
8 陳曦;徐趙東;朱俊濤;;基于LQR的精密平臺(tái)振動(dòng)控制[A];全國(guó)結(jié)構(gòu)振動(dòng)與動(dòng)力學(xué)學(xué)術(shù)研討會(huì)論文集[C];2011年
9 王威;王社良;蘇三慶;史慶軒;;應(yīng)用SMA進(jìn)行土木結(jié)構(gòu)振動(dòng)控制存在的幾個(gè)問(wèn)題[A];振動(dòng)利用技術(shù)的若干研究與進(jìn)展——第二屆全國(guó)“振動(dòng)利用工程”學(xué)術(shù)會(huì)議論文集[C];2003年
10 王波;殷學(xué)綱;黃尚廉;;壓電智能梁的主/被動(dòng)振動(dòng)控制的研究[A];第八屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文集摘要[C];2003年
相關(guān)重要報(bào)紙文章 前1條
1 于洋;熱衷于振動(dòng)控制和環(huán)保節(jié)能的創(chuàng)新專家[N];科技日?qǐng)?bào);2007年
相關(guān)博士學(xué)位論文 前5條
1 張旭方;撓電智能結(jié)構(gòu)的振動(dòng)控制與能量采集研究[D];浙江大學(xué);2017年
2 游偉倩;多輸入多輸出振動(dòng)系統(tǒng)H_2/H∞控制研究[D];南京航空航天大學(xué);2010年
3 劉利軍;轉(zhuǎn)動(dòng)ACLD懸臂板的動(dòng)力學(xué)建模及振動(dòng)控制[D];上海交通大學(xué);2008年
4 趙東;組合抗振海洋平臺(tái)振動(dòng)控制研究[D];山東大學(xué);2006年
5 張力;導(dǎo)管架海洋平臺(tái)冰激振動(dòng)控制的實(shí)驗(yàn)研究[D];大連理工大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 高軍虎;展開天線結(jié)構(gòu)動(dòng)力學(xué)和振動(dòng)控制分析[D];浙江大學(xué);2012年
2 卞建賓;保型振動(dòng)控制在建筑加固中的應(yīng)用研究[D];內(nèi)蒙古科技大學(xué);2011年
3 郭克尖;不確定性振動(dòng)控制的凸模型理論[D];吉林大學(xué);2004年
4 劉亞婷;振動(dòng)控制系統(tǒng)小型化及快速算法的研究[D];南京航空航天大學(xué);2005年
5 屈召富;基于內(nèi)部耗能減振的海洋平臺(tái)振動(dòng)控制研究[D];山東大學(xué);2008年
6 林濤;拉索振動(dòng)控制的PID算法[D];華中科技大學(xué);2004年
7 高志;壓電智能結(jié)構(gòu)對(duì)橋梁的振動(dòng)控制[D];武漢理工大學(xué);2007年
8 劉鑫;基于振動(dòng)控制模型的回轉(zhuǎn)軸控制策略研究[D];湖北工業(yè)大學(xué);2011年
9 史麗云;PCLD、ACLD拱殼建模及振動(dòng)控制分析[D];廣西工學(xué)院;2010年
10 崔瓊;懸吊式TMD對(duì)近海風(fēng)機(jī)的振動(dòng)控制研究[D];大連理工大學(xué);2011年
,本文編號(hào):2486540
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2486540.html