永磁直驅(qū)風(fēng)力發(fā)電控制系統(tǒng)研究
[Abstract]:Energy shortage has become a worldwide problem. The research of new energy such as wind energy and solar energy has been paid more and more attention. Wind power generation has become one of the main power generation methods because of its high efficiency and renewable advantages. Permanent magnet direct drive wind power generation has become the mainstream generation mode due to its high generation efficiency and excellent grid access performance. The control of permanent magnet direct drive wind power generation system includes the control of power side converter and the control of motor side permanent magnet generator. The control strategy of the grid side converter is directly related to the active power transmission between the generator and the power grid and the reactive power regulation of the power generation system. The control strategy of the motor side generator is directly related to the active power output of the motor stator and the utilization of wind energy in the power generation system. Therefore, the proper permanent magnet direct drive wind power generation control strategy is the key to improve the performance of power generation system. The control strategy of permanent magnet direct drive wind power generation is studied in this paper. Firstly, the phase-locked loop (PLL), the key technology of grid-connected inverter, is studied in detail, aiming at the possible distortion of the grid voltage, taking the grid-side converter as the research object. The double synchronous coordinate decoupling software phase locked loop (PLL) is introduced and the current control strategy of grid connection is analyzed. Secondly, the power topology, mathematical model and double closed loop control mechanism of the permanent magnet motor on the motor side are analyzed, and the vector control technology is analyzed. Aiming at the practical application of wind power generation, the speed sensorless control technology of permanent magnet synchronous motor (PMSM) is studied. In this paper, the application of sliding mode observer in speed sensorless system is analyzed. According to the shortcomings of sliding mode observer, the speed sensorless control technology based on disturbance observer is introduced. Therefore, the high frequency interference caused by the differentiation of the state variable current by the sliding mode observer and the phase delay caused by the high frequency harmonic caused by the inherent buffeting caused by the sliding mode observer are avoided, and the phase delay caused by the design of the digital filter is also avoided. Finally, PSIM and Microsoft Visual C 6.0 are used to simulate and verify the performance of PLL, two speed sensorless control algorithms and the overall control strategy of power generation system under the condition of power grid distortion respectively. Based on the built-up experimental platform, the control software is programmed and the related experiments are carried out. The simulation and experimental results show that the proposed control strategy can realize the VSCF operation of the system, the precise phase locking under the voltage fault of the power grid, and the independent regulation of the active and reactive power output of the system, and the control strategy of the permanent magnet direct drive wind power generation system can realize the variable speed constant frequency generation operation of the system. Ensure the permanent magnet motor speed sensorless stable operation, output sinusoidal better grid-connected current. The results of simulation and experiment agree with the theory and lay a foundation for engineering application.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杭俊;張建忠;程明;丁石川;李國(guó)麗;;基于線電壓誤差的永磁直驅(qū)風(fēng)電系統(tǒng)變流器開(kāi)路故障診斷[J];中國(guó)電機(jī)工程學(xué)報(bào);2017年10期
2 張曲遙;高艷霞;陳靜;宋文祥;;基于滑模觀測(cè)器的永磁同步電機(jī)無(wú)位置傳感器控制[J];電機(jī)與控制應(yīng)用;2016年06期
3 冀飛鶯;郭政建;;風(fēng)力發(fā)電及其技術(shù)發(fā)展研究[J];企業(yè)技術(shù)開(kāi)發(fā);2016年02期
4 陸ZK泉;林鶴云;韓俊林;;永磁同步電機(jī)的擾動(dòng)觀測(cè)器無(wú)位置傳感器控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2016年05期
5 王麗宏;;我國(guó)風(fēng)力發(fā)電現(xiàn)狀及技術(shù)發(fā)展[J];科技與企業(yè);2015年18期
6 黃科元;劉靜佳;黃守道;易韻嵐;周李澤;;永磁直驅(qū)系統(tǒng)變流器開(kāi)路故障診斷方法[J];電工技術(shù)學(xué)報(bào);2015年16期
7 宋恒東;董學(xué)育;;風(fēng)力發(fā)電技術(shù)現(xiàn)狀及發(fā)展趨勢(shì)[J];電工電氣;2015年01期
8 張興;郭磊磊;楊淑英;曹仁賢;;永磁同步發(fā)電機(jī)無(wú)速度傳感器控制[J];中國(guó)電機(jī)工程學(xué)報(bào);2014年21期
9 李妍;;關(guān)于我國(guó)風(fēng)力發(fā)電現(xiàn)狀及其技術(shù)應(yīng)用狀況的分析[J];科技創(chuàng)新與應(yīng)用;2014年03期
10 史旺旺;劉超;;基于Lyapunov函數(shù)的直驅(qū)式風(fēng)力發(fā)電機(jī)的無(wú)速度傳感器直接功率控制[J];電力自動(dòng)化設(shè)備;2013年01期
相關(guān)博士學(xué)位論文 前2條
1 任康樂(lè);中壓三電平全功率風(fēng)電變流器關(guān)鍵技術(shù)研究[D];合肥工業(yè)大學(xué);2016年
2 王慶龍;交流電機(jī)矢量控制系統(tǒng)滑模變結(jié)構(gòu)控制策略研究[D];合肥工業(yè)大學(xué);2007年
相關(guān)碩士學(xué)位論文 前9條
1 王詩(shī)琦;基于TMS320F28335的永磁同步電機(jī)矢量控制系統(tǒng)設(shè)計(jì)[D];大連理工大學(xué);2014年
2 徐亞偉;并網(wǎng)逆變器中全軟件鎖相環(huán)的設(shè)計(jì)與實(shí)現(xiàn)[D];南京理工大學(xué);2014年
3 龍明貴;永磁同步電機(jī)矢量控制分析[D];西南交通大學(xué);2012年
4 劉彬;無(wú)速度傳感器的直驅(qū)永磁風(fēng)力發(fā)電變流器控制研究[D];哈爾濱工業(yè)大學(xué);2012年
5 朱曉亮;基于電網(wǎng)電壓定向三相并網(wǎng)逆變器的研究[D];南京航空航天大學(xué);2010年
6 程顯忠;風(fēng)力發(fā)電試驗(yàn)系統(tǒng)的研究[D];合肥工業(yè)大學(xué);2007年
7 侯慶明;中小型永磁直驅(qū)風(fēng)力發(fā)電控制系統(tǒng)的設(shè)計(jì)和仿真[D];沈陽(yáng)工業(yè)大學(xué);2006年
8 湯新舟;永磁同步電機(jī)的矢量控制系統(tǒng)[D];浙江大學(xué);2005年
9 代洪濤;15KW變速恒頻雙饋風(fēng)力發(fā)電機(jī)勵(lì)磁控制系統(tǒng)的研究[D];沈陽(yáng)工業(yè)大學(xué);2004年
,本文編號(hào):2468021
本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2468021.html