天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 電氣論文 >

風(fēng)機齒輪箱多故障診斷問題研究

發(fā)布時間:2019-04-11 17:27
【摘要】:隨著風(fēng)電產(chǎn)業(yè)的發(fā)展,風(fēng)力發(fā)電機組的穩(wěn)定安全運行和故障診斷越來越受到科學(xué)研究者的注意。齒輪箱是風(fēng)機傳動鏈的一個重要組成部件,它在運行中會受多種因素影響;齒輪箱一旦發(fā)生故障,就可能引發(fā)風(fēng)機傳動鏈的崩潰。因此,齒輪箱的故障診斷研究對于維持風(fēng)機的正常運行具有重要意義。本文的主要研究內(nèi)容是風(fēng)機齒輪箱多故障診斷,為了解決這個問題,文章提出了兩種不同的解決方案:1、本文提出了一種新的欠定盲源分離算法來解決齒輪箱多故障診斷問題。該算法將盲源分離問題分解為兩個子問題,即源信號數(shù)目估計和源信號恢復(fù)。源信號數(shù)目由經(jīng)驗?zāi)B(tài)分解(empirical mode decomposition,EMD)、奇異值分解(singular value decomposition,SVD)和 K 均值(K-means)聚類聯(lián)合算法估計。然后,輸入信號通過短時傅立葉變換轉(zhuǎn)換到時-頻域。最后,通過模糊C聚類估計混疊矩陣,恢復(fù)源信號采用的是最小化l1范數(shù)。實驗結(jié)果清晰地驗證了算法在處理齒輪箱非線性多故障問題時的有效性。2、本文的另一種方法為基于支持向量機(support vector machine,SVM)概率估計的多故障診斷方法。該方法對安裝在齒輪箱上不同位置的傳感器分別建立支持向量機模型。每個模型都會輸出樣本歸屬于各個類的概率,最終診斷結(jié)果是這些概率的綜合。為了提高模型的診斷率,方法引入了總體經(jīng)驗?zāi)B(tài)分解(ensemble empirical mode decomposition,EEMD)來進行特征提取。該算法的有效性經(jīng)仿真數(shù)據(jù)和真實數(shù)據(jù)驗證。
[Abstract]:With the development of wind power industry, more and more scientific researchers pay attention to the stable and safe operation and fault diagnosis of wind turbine. Gear box is an important component of fan transmission chain, it will be affected by many factors in operation, once the gear box failure, it may lead to the failure of fan transmission chain. Therefore, the research on fault diagnosis of gearbox is of great significance for maintaining the normal operation of fan. The main research content of this paper is multi-fault diagnosis of fan gearbox. In order to solve this problem, this paper puts forward two different solutions: 1, In this paper, a new blind source separation algorithm is proposed to solve the problem of multi-fault diagnosis of gearbox. The algorithm decomposes the blind source separation problem into two sub-problems, that is, the estimation of the number of source signals and the restoration of the source signals. The number of source signals is estimated by the combined empirical mode decomposition (empirical mode decomposition,EMD), singular value decomposition (singular value decomposition,SVD) and K-means (K-means) clustering algorithms. Then, the input signal is converted to time-frequency domain by short-time Fourier transform. Finally, the aliasing matrix is estimated by fuzzy C clustering, and the minimum L1 norm is used to recover the source signal. The experimental results clearly verify the effectiveness of the algorithm in dealing with the nonlinear multi-fault problem of gearbox. 2. Another method in this paper is the multi-fault diagnosis method based on support vector machine (support vector machine,SVM) probability estimation. The support vector machine (SVM) models for sensors installed in different locations of gearbox are established by this method. Each model outputs the probability that the sample belongs to each class, and the final diagnosis result is a synthesis of these probabilities. In order to improve the diagnostic rate of the model, the ensemble empirical mode decomposition (ensemble empirical mode decomposition,EEMD) is introduced to extract the features. The validity of the algorithm is verified by simulation data and real data.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TM315

【參考文獻】

相關(guān)期刊論文 前8條

1 楊杰;俞文文;田昊;關(guān)珍貞;;基于獨立分量分析的欠定盲源分離方法[J];振動與沖擊;2013年07期

2 龍泉;劉永前;楊勇平;;基于粒子群優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的風(fēng)電機組齒輪箱故障診斷方法[J];太陽能學(xué)報;2012年01期

3 陳雪峰;李繼猛;程航;李兵;何正嘉;;風(fēng)力發(fā)電機狀態(tài)監(jiān)測和故障診斷技術(shù)的研究與進展[J];機械工程學(xué)報;2011年09期

4 唐新安;謝志明;王哲;吳金強;;風(fēng)力機齒輪箱故障診斷[J];噪聲與振動控制;2007年01期

5 李曉虎,賈民平,許飛云;頻譜分析法在齒輪箱故障診斷中的應(yīng)用[J];振動、測試與診斷;2003年03期

6 陳忠,鄭時雄;基于經(jīng)驗?zāi)J椒纸?EMD)的齒輪箱齒輪故障診斷技術(shù)研究[J];振動工程學(xué)報;2003年02期

7 鄭紅軍,周旭,畢篤彥;統(tǒng)計學(xué)習(xí)理論及支持向量機概述[J];現(xiàn)代電子技術(shù);2003年04期

8 楊江天,陳家驥,曾子平;基于高階譜的旋轉(zhuǎn)機械故障征兆提取[J];振動工程學(xué)報;2001年01期

,

本文編號:2456616

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/dianlidianqilunwen/2456616.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶112a7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com